Datasheet Texas Instruments LM3S1N11-IQC50-C5

ManufacturerTexas Instruments
SeriesLM3S1N11
Part NumberLM3S1N11-IQC50-C5
Datasheet Texas Instruments LM3S1N11-IQC50-C5

Stellaris LM3S Microcontroller 100-LQFP -40 to 85

Datasheets

Stellaris LM3S1N11 Microcontroller Data Sheet datasheet
PDF, 5.3 Mb, Revision: N, File published: Jul 3, 2014
Extract from the document

Prices

Status

Lifecycle StatusObsolete (Manufacturer has discontinued the production of the device)
Manufacture's Sample AvailabilityNo

Packaging

Pin100100
Package TypePZPZ
Industry STD TermLQFPLQFP
JEDEC CodeS-PQFP-GS-PQFP-G
CarrierJEDEC TRAY (5+1)JEDEC TRAY (5+1)
Device MarkingIQC50LM3S1N11
Width (mm)1414
Length (mm)1414
Thickness (mm)1.41.4
Pitch (mm).5.5
Max Height (mm)1.61.6
Mechanical DataDownloadDownload

Eco Plan

RoHSNot Compliant

Application Notes

  • Using Execute, Write/Erase Flash Protection on Stellaris MCUs Using CCS (Rev. A)
    PDF, 1.7 Mb, Revision: A, File published: Aug 15, 2012
    Protection of code and IP in a microcontroller's Flash memory has always been an important consideration for the system designers. StellarisВ® microcontrollers feature a code protection mechanism that enables developers to protect their code and IP in the end application, while providing the flexibility to upgrade the firmware using a boot loader. This application report describes using Flash p
  • Using AES Encryption and Decryption with Stellaris Microcontrollers (AN01251) (Rev. B)
    PDF, 113 Kb, Revision: B, File published: Jan 8, 2010
    This application note describes the following four encryption methods used with AES: Electronic code book (ECB), cipher block chaining (CBC) or chained encryption, cipher feedback (CFB), and counter (CTR). These methods are described in more detail to help you select the appropriate method(s) for your application. The encryption package described in this application note is available with full sou
  • Programming the On-Chip Flash Memory in a Stellaris Microcontroller (AN01237)
    PDF, 95 Kb, File published: Jul 7, 2009
    This application note provides three methods for erasing and programming Flash memory: the StellarisWare Peripheral DriverLib, software polling for completed updates, and interrupt-driven updates.
  • System Design Guidelines for StellarisВ® Microcontrollers В  (Rev. B)
    PDF, 278 Kb, Revision: B, File published: Feb 4, 2013
  • Using the Stellaris Microcontroller Analog-to-Digital Converter (AN01247)
    PDF, 170 Kb, File published: Jul 7, 2009
    This application note describes ADC sampling and configuring Stellaris microcontrollers through the StellarisWare Peripheral Driver Library or through direct writes to the device's control registers.
  • Using SYS/BIOS with StellarisВ® ARMВ® Cortexв„ў-M3 Microcontrollers (Rev. A)
    PDF, 1.4 Mb, Revision: A, File published: Nov 19, 2012
    This document provides a brief overview of the Texas Instruments’ SYS/BIOS Real-Time Operating System (RTOS) and outlines how to implement SYS/BIOS on the Stellaris® Cortex™-M3 family of microcontrollers. In addition to setting up and running an example project provided within the SYS/BIOS software package, this document outlines the process of creating a new SYS/BIOS project with the Code Compose
  • Differences Among StellarisВ® LM3S and Tivaв„ў C Series TM4C123x MCUs (Rev. E)
    PDF, 162 Kb, Revision: E, File published: Sep 24, 2013
    is document addresses design items to be aware of when migrating working designs among Fury-, DustDevil-, Tempest-, and Firestorm-StellarisВ® microcontrollers (MCUs) and Tivaв„ў C Series TM4C123x-class MCUs. Topics covered include both software and hardware issues as well as feature changes and enhancements. All software issues are comprehended in the Driver Library APIs. As a result, syste
  • Configuring StellarisВ® Tempest- and Firestorm-Class and MCUs W/ Pin Multiplexing (Rev. C)
    PDF, 172 Kb, Revision: C, File published: Nov 6, 2013
    Many members of the StellarisВ® family of microcontrollers provide system designers with a great deal of control over the placement and selection of peripheral module signals that are alternate functions for GPIO signals. This application note provides an overview of the pin muxing implementation, an explanation of how a system designer defines a pin configuration, and examples of the pin confi
  • Using the Stellaris Serial Flash Loader (AN01242)
    PDF, 120 Kb, File published: Jul 7, 2009
    This application note describes how to communicate with the Stellaris serial flash loader application.
  • Using a 9-bit Software UART with Stellaris (AN01280)
    PDF, 301 Kb, File published: Jul 7, 2009
    This application note describes how to extend the functionality of the standard hardware UART available on StellarisВ® microcontrollers by using the 9-bit UART add-on.
  • Optimizing Code Performance and Size for Stellaris Microcontrollers (AN01265)
    PDF, 161 Kb, File published: Jul 7, 2009
    This application note provides a summary of factors that affect code performance and size for StellarisВ® microcontrollers and suggestions to improve code performance and size including example code.
  • StellarisВ® LM3S ADC Calibration (AN01282) (Rev. C)
    PDF, 127 Kb, Revision: C, File published: Nov 1, 2012
    This application report describes a method for improving the absolute accuracy of the analog-to-digital converters (ADCs) found on StellarisВ® LM3S microcontrollers. Due to inherent gain and offset errors, the absolute accuracy of the ADC is affected. The methods described in this application report can improve the absolute accuracy of the ADC results.
  • Using Stellaris MCUs Internal Flash Memory to Emulate EEPROM (AN01267)
    PDF, 91 Kb, File published: Jul 7, 2009
    This application note describes how to emulate EEPROM using the internal Flash memory and provides an example application that uses EEPROM emulation drivers.
  • Software UART for Stellaris Microcontrollers (AN01270)
    PDF, 77 Kb, File published: Jul 7, 2009
    This application note looks at implementing a software-based UART which, using general-purpose input/outputs (GPIO), allows the user to overcome hardware limitations or lack of dedicated peripherals.
  • ADC Oversampling Techniques for Stellaris Microcontrollers (AN01239) (Rev. A)
    PDF, 95 Kb, Revision: A, File published: Jan 8, 2013
    Some members of the Stellaris microcontroller family have an analog-to-digital converter (ADC) module. The hardware resolution of the ADC is 10 bits; however, due to noise and other accuracy diminishing factors, the true accuracy is less than 10 bits. This application report provides a software-based oversampling technique, resulting in an improved effective number of bits (ENOB) in the conversion
  • Implementing RS-232 Flow Control on a Stellaris Microcontroller (AN01255)
    PDF, 74 Kb, File published: Jul 7, 2009
    This application note describes how to implement flow control by using the Stellaris GPIO module with its interrupt support.

Model Line

Manufacturer's Classification

  • Semiconductors > Microcontrollers (MCU) > Performance MCUs > Control + Automation > LM3S Cortex-M3 Series

Other Names:

LM3S1N11IQC50C5, LM3S1N11 IQC50 C5