Datasheet Texas Instruments MSP430G2533IPW28
Manufacturer | Texas Instruments |
Series | MSP430G2533 |
Part Number | MSP430G2533IPW28 |
MSP430G2x33, MSP430G2x03 Mixed Signal Microcontroller 28-TSSOP -40 to 85
Datasheets
MSP430G2x33, MSP430G2x03 Mixed-Signal Microcontrollers datasheet
PDF, 1.8 Mb, Revision: G, File published: Apr 27, 2016
Extract from the document
Prices
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
Packaging
Pin | 28 |
Package Type | PW |
Industry STD Term | TSSOP |
JEDEC Code | R-PDSO-G |
Package QTY | 50 |
Carrier | TUBE |
Device Marking | 430G2533 |
Width (mm) | 4.4 |
Length (mm) | 9.7 |
Thickness (mm) | 1 |
Pitch (mm) | .65 |
Max Height (mm) | 1.2 |
Mechanical Data | Download |
Parametrics
ADC | ADC10 - 8ch |
AES | N/A |
Active Power | 330 uA/MHz |
Additional Features | Watchdog,Temp Sensor,Brown Out Reset,IrDA |
BSL | UART |
CPU | MSP430 |
Featured | g2 |
Frequency | 16 MHz |
GPIO Pins | 24 |
I2C | 1 |
Max VCC | 3.6 |
Min VCC | 1.8 |
Multiplier | N/A |
Non-volatile Memory | 16 KB |
Operating Temperature Range | -40 to 85 C |
Package Group | TSSOP |
Package Size: mm2:W x L | 20TSSOP: 42 mm2: 6.4 x 6.5(TSSOP) PKG |
RAM | 0.5 KB |
Rating | Catalog |
SPI | 2 |
Special I/O | Capacitive Touch I/O |
Standby Power | 0.7 LPM3-uA |
Timers - 16-bit | 2 |
UART | 1 |
Wakeup Time | 1.5 us |
Eco Plan
RoHS | Compliant |
Design Kits & Evaluation Modules
- Evaluation Modules & Boards: 430BOOST-CC110L
CC110L RF BoosterPack
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: 430BOOST-SENSE1
MSP430 Capacitive Touch BoosterPack
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: MSP-EXP430G2
MSP430 LaunchPad Value Line Development kit
Lifecycle Status: Active (Recommended for new designs) - Development Kits: MSP-FET430U28A
28-pin Target Development Board and MSP-FET USB Programmer Bundle for MSP430F2x and MSP430G2x MCUs
Lifecycle Status: Active (Recommended for new designs) - JTAG Emulators/ Analyzers: ENERGYTRACE
MSP EnergyTrace Technology
Lifecycle Status: Active (Recommended for new designs)
Application Notes
- Capacitive Touch Sensing, MSP430 Button Gate Time Optimization and Tuning GuidePDF, 1.1 Mb, File published: May 21, 2013
MSP430в„ў microcontroller based capacitive touch buttons can offer increased performance when properly optimized and tuned for their specific application. Performance benefits that result from button optimization can include, but are not limited to, decreased power consumption, improved response time, and the ability to grow a design to include more buttons. This application report provides th - Capacitive Touch Sensing, MSP430 Slider and Wheel Tuning GuidePDF, 1.0 Mb, File published: May 21, 2013
This application report provides guidelines on how to tune capacitive touch sliders and wheels running on the MSP430в„ў microcontrollers. It identifies the hardware and software parameters as well as explains the steps used in tuning sliders and wheels.The slider and wheel tuning is based on the APIs defined within the Capacitive Touch Sense Library (CAPSENSELIBRARY). - Capacitive Touch Hardware Design Guide (Rev. A)PDF, 784 Kb, Revision: A, File published: Nov 17, 2015
Capacitive touch detection is sometimes considered more art than science. This often results in multiple design iterations before the optimum performance is achieved. There are, however, good design practices for circuit layout and principles of materials that need to be understood to keep the number of iterations to a minimum. This design guide describes a process for creating and designing capac - 1-uA Capacitive Grip Detection Based on MSP430 Microcontrollers (Rev. B)PDF, 373 Kb, Revision: B, File published: Aug 14, 2013
This application report discusses how to design a simple and ultra low-power grip detector BoosterPack for the MSP430 LaunchPadв„ў. The PINOSC feature in every msp430G2xx2 and msp430G2xx3 device makes it possible to eliminate all the external components when implementing a capacitive touch design. All the components used in the grip detector, such as capacitive sensors, LEDs are all integrate - Migrating From MSP430 F2xx and G2xx Families to MSP430 FR4xx and FR2xx Family (Rev. E)PDF, 237 Kb, Revision: E, File published: May 4, 2018
This application report helps to ease the migration from MSP430F2xx flash-based MCUs to the MSP430FR4xx and MSP430FR2xx family of FRAM-based MCUs. It discusses programming system hardware core architecture and peripheral considerations. The intent is to highlight key differences between the two families. For more information on the use of the MSP430FR4xx and MSP430FR2xx devices see the MSP430 - Migrating from the MSP430F2xx,G2xx Family to the MSP430FR58xx/FR59xx/68xx/69xx (Rev. E)PDF, 179 Kb, Revision: E, File published: Nov 3, 2016
This application report enables easy migration from MSP430F2xx flash-based MCUs to the MSP430FR58xx/FR59xx/68xx/69xx family of FRAM-based MCUs. For the migration guide to MSP430FR57xx, see Migrating From the MSP430F2xx Family to the MSP430FR57xx Family. It covers programming, system, and peripheral considerations when migrating firmware. The intent is to highlight key differences between the two f
Model Line
Series: MSP430G2533 (7)
Manufacturer's Classification
- Semiconductors > Microcontrollers (MCU) > MSP430 ultra-low-power MCUs > MSP430G2x/i2x