Datasheet Texas Instruments CC430F5133IRGZ
Manufacturer | Texas Instruments |
Series | CC430F5133 |
Part Number | CC430F5133IRGZ |
16-Bit Ultra-Low-Power MCU, 8KB Flash, 2KB RAM, CC1101 Radio, AES-128, 12Bit ADC, USCI 48-VQFN -40 to 85
Datasheets
CC430F613x, CC430F612x, CC430F513x MSP430 SoC With RF Core datasheet
PDF, 2.0 Mb, Revision: H, File published: Sep 6, 2013
Extract from the document
Prices
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
Packaging
Pin | 48 | 48 |
Package Type | RGZ | RGZ |
Industry STD Term | VQFN | VQFN |
JEDEC Code | S-PQFP-N | S-PQFP-N |
Package QTY | 52 | 52 |
Carrier | TUBE | TUBE |
Device Marking | CC430 | F5133 |
Width (mm) | 7 | 7 |
Length (mm) | 7 | 7 |
Thickness (mm) | .9 | .9 |
Pitch (mm) | .5 | .5 |
Max Height (mm) | 1 | 1 |
Mechanical Data | Download | Download |
Parametrics
ADC | ADC12 - 6ch |
Additional Features | Real-Time Clock,Watchdog,Temp Sensor,Brown Out Reset |
Antenna Connection | Differential |
CPU | MSP430 |
CPU Core | MSP430 |
CPU Processing Power Consumption | 160 uA/MHz |
Data Rate (Max) | 500 kbps |
Flash | 8 KB |
Frequency | 20 MHz |
Frequency Bands | 315,433,779,868,915,920 MHz |
GPIO | 30 |
I2C | 1 |
Key Applications | Data logging, Remote monitoring systems, Wireless sensor networks |
Max VCC | 3.6 |
Min VCC | 1.8 |
Non-volatile Memory | 8 KB |
Operating Temperature Range | -40 to 85 C |
Package Group | VQFN |
Package Size: mm2:W x L | 48VQFN: 49 mm2: 7 x 7(VQFN) PKG |
RAM | 2 KB |
RF standard supported | Proprietary (Sub 1GHz) |
ROM | N/A KB |
RX Current (Lowest) | 15 mA |
SPI | 1 |
SRAM | 2 kB |
Security | AES |
Standard version | N/A |
Standby Current | 1 uA |
Timers - 16-bit | 2 |
UART | 1 |
Wake-on radio | Yes |
Wakeup time from standby | 240 us |
Eco Plan
RoHS | Compliant |
Design Kits & Evaluation Modules
- Evaluation Modules & Boards: MSP-SA430-SUB1GHZ
Sub-1 GHz RF Spectrum Analyzer Tool
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: EM430F5137RF900
CC430F5137 Wireless Development Tool
Lifecycle Status: Active (Recommended for new designs)
Application Notes
- CC430 Wake-On-Radio Functionality (Rev. A)PDF, 210 Kb, Revision: A, File published: Jul 10, 2012
The Wake-On-Radio (WOR) feature of the CC430 is a recommended method for conserving power in wireless systems in which the radio periodically wakes up from SLEEP mode and listens for incoming packets. This application note describes the theory, RF1A registers, and timing of the WOR feature. It also describes the special use case of the CC430F61xx and CC430F51xx devices. This application note concl - AN088 -- SimpliciTI on the CC430 – Practical ModificationsPDF, 89 Kb, File published: Mar 10, 2010
- CC430-Based Wireless Mesh Network Mains SwitchPDF, 966 Kb, File published: May 20, 2011
This application report describes a simple wireless mesh network running on a number of wireless power points. Each power point contains a timer switch and a power monitor. The mesh network is self learning. A data concentrator works through the various power points it discovers and forms a network. It can then program the on/off timing of the power point's switch and monitor its power consumption - CC430 RF Examples (Rev. C)PDF, 117 Kb, Revision: C, File published: Sep 7, 2012
This application report describes the library components and implementation of the RF code examples for the CC430F61xx and CC430F51xx sub-1GHz system-on-chip (SoC) devices. The examples include support for packet-handling modes, including variable and fixed length filtering, as well as the asynchronous and synchronous modes of communication. The document also explains the key RF configuration regi - Using a DC-DC Converter to Reduce Power (Current) Consumption In CC430 SystemsPDF, 4.6 Mb, File published: Jul 5, 2011
This application report describes a method to reduce power consumption in CC430-based systems by using a step-down converter TPS62730. - AN105 -- Using 1W RF3858 Front End with CC1101 Under FCC 15.247 (Rev. A)PDF, 983 Kb, Revision: A, File published: Aug 3, 2011
- AN094 -- Using the CC1190 Front End with CC1101 under EN 300 220PDF, 371 Kb, File published: Jan 11, 2011
- DN036 -- CC1101+CC1190 600 kbps Data Rate, +19 dBm Transmit (Rev. A)PDF, 139 Kb, Revision: A, File published: Nov 7, 2011
- AN072 -- Using the TAI-SAW TA0801A SAW Filter and External PA (Rev. A)PDF, 359 Kb, Revision: A, File published: Aug 19, 2009
- AN050 -- Using the CC1101 in the European 868MHz SRD band (Rev. B)PDF, 223 Kb, Revision: B, File published: Sep 11, 2009
- DN508 -- Frequency Scanning using CC430Fx, CC110x, and CC111xFxPDF, 65 Kb, File published: Jan 25, 2010
The purpose of this design note is to show the necessary steps to successfully scan through a frequency band covering n numbers of channels, and find the strongest signal in the band. - DN005 -- CC11xx Sensitivity versus Frequency Offset and Crystal Accuracy (Rev. C)PDF, 96 Kb, Revision: C, File published: Aug 20, 2009
- DN022 -- CC110x CC111x OOK ASK Register Settings (Rev. E)PDF, 532 Kb, Revision: E, File published: Mar 8, 2012
- DN032 -- Options for Cost Optimized CC11xx MatchingPDF, 112 Kb, File published: Aug 25, 2010
- DN016 -- Compact Antenna Solution for 868/915 MHz (Rev. B)PDF, 832 Kb, Revision: B, File published: Aug 20, 2009
- DN019 -- Powering Low-Power RF Products (Rev. B)PDF, 327 Kb, Revision: B, File published: Sep 18, 2009
- DN507 -- FEC DecodingPDF, 264 Kb, File published: Jan 28, 2010
The purpose of this design note is to show how the FEC decoding implemented in HW on the CC1100, CC1100E, CC1101, CC1110Fx, CC1111Fx, CC1150, CC2500, CC2510Fx, CC2511Fx, and CC2550 can be implemented in SW. This is in particular very important for the CC430Fx device, which has the same radio as the CC1101 and CC1110/11Fx but without HW FEC included. - DN024 -- 868 MHz, 915 MHz and 955 MHz Monopole PCB Antenna (Rev. E)PDF, 1.0 Mb, Revision: E, File published: Feb 22, 2013
- DN502 -- CRC Implementation (Rev. D)PDF, 55 Kb, Revision: D, File published: Oct 27, 2009
- AN001 -- SRD regulations for license free transceiver operationPDF, 260 Kb, File published: Feb 1, 2006
- DN033 - Mitsubishi Ceramic Antenna for 868 MHz, 915 MHz & 955 (Rev. A)PDF, 685 Kb, Revision: A, File published: Sep 14, 2010
- DN023 -- 868 MHz, 915 MHz and 955 MHz Inverted F Antenna (Rev. C)PDF, 369 Kb, Revision: C, File published: Aug 30, 2011
- DN002 -- Practical Sensitivity TestingPDF, 364 Kb, File published: Dec 20, 2006
- AN003 -- SRD AntennasPDF, 358 Kb, File published: Feb 1, 2006
- DN000 - Design Note Overview (Rev. T)PDF, 126 Kb, Revision: T, File published: Oct 12, 2011
- DN031 -- CC-Antenna-DK Documentation and Antenna Measurements SummaryPDF, 2.3 Mb, File published: Aug 26, 2010
DN031 -- Design Notes - AN058 -- Antenna Selection Guide (Rev. B)PDF, 1.8 Mb, Revision: B, File published: Oct 6, 2010
- Using the USCI I2C Master (Rev. A)PDF, 69 Kb, Revision: A, File published: Mar 11, 2015
This document describes how to use the I2C master function set for MSP430в„ў devices with the USCI module. These functions can be used by MSP430 master devices to ensure proper initialization of the USCI module and provide I2C transmit and receive functionality. A similar version with DMA support has also been included. The USCI I2C master function set only supports single-master transmitter or rece - DN035 -- Antenna Quick Guide (Rev. A)PDF, 138 Kb, Revision: A, File published: Feb 12, 2013
- Design Considerations When Using the MSP430 Graphics LibraryPDF, 475 Kb, File published: Oct 5, 2012
LCDs are a growing commodity in todays market with products as diverse as children's toys to medical devices. Modern LCDs, along with the graphics displayed on them, are growing in complexity. A graphics library can simplify and accelerate development while creating the desired user experience. TI provides the MSP430 Graphics Library for use in developing products with the MSP430в„ў MCU. This
Model Line
Series: CC430F5133 (3)
- CC430F5133IRGZ CC430F5133IRGZR CC430F5133IRGZT
Manufacturer's Classification
- Semiconductors > Microcontrollers (MCU) > Other Microcontrollers > CC430