Datasheet Texas Instruments 905-5462001

ManufacturerTexas Instruments
SeriesTPS54620
Part Number905-5462001
Datasheet Texas Instruments 905-5462001

4.5V to 17V Input, 6A Synchronous Step-Down SWIFT™ Converter 14-VQFN -40 to 150

Datasheets

TPS54620 4.5-V to 17-V Input, 6-A, Synchronous, Step-Down SWIFTв„ў Converter datasheet
PDF, 2.1 Mb, Revision: F, File published: May 23, 2017
Extract from the document

Prices

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityYes

Packaging

Pin14
Package TypeRGY
Industry STD TermVQFN
JEDEC CodeS-PQFP-N
Package QTY3000
CarrierLARGE T&R
Device Marking54620
Width (mm)3.5
Length (mm)3.5
Thickness (mm).9
Pitch (mm).5
Max Height (mm)1
Mechanical DataDownload

Parametrics

Control ModeCurrent Mode
Duty Cycle(Max)98 %
Iout(Max)6 A
Iq(Typ)0.6 mA
Operating Temperature Range-40 to 150 C
Package GroupVQFN
RatingCatalog
Regulated Outputs1
Special FeaturesEnable,Frequency Synchronization,Power Good,Pre-Bias Start-Up,Synchronous Rectification,Tracking
Switching Frequency(Max)1600 kHz
Switching Frequency(Min)200 kHz
TypeConverter
Vin(Max)17 V
Vin(Min)4.5 V
Vout(Max)15 V
Vout(Min)0.8 V

Eco Plan

RoHSCompliant

Design Kits & Evaluation Modules

  • Evaluation Modules & Boards: DLPLCR4500EVM
    DLPВ® LightCrafterВ™ 4500
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: EVMK2G
    66AK2Gx (K2G) Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: DLPLCR6500EVM
    DLPВ® LightCrafterВ™ 6500 Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: TPS54620EVM-374
    TPS54620 8V to 17V, 6A SWIFTВ™ Converter Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: DLPLCR9000EVM
    DLPВ® LightCrafterВ™ 9000 Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)

Application Notes

  • Demystifying Type II and Type III Compensators Using Op-Amp and OTA for DC/DC Co
    PDF, 782 Kb, File published: Jul 11, 2014
  • Ultra Small 5A, Adjustable Output Reference design using TPS54620
    PDF, 711 Kb, File published: May 21, 2010
  • Create an Inverting Power Supply Using a Synchronous Step-Down Regulator (Rev. A)
    PDF, 911 Kb, Revision: A, File published: Jun 18, 2012
  • Minimizing Output Ripple During Startup
    PDF, 675 Kb, File published: Jun 22, 2017
    A buck DC/DC switching converter has a minimum on-time at which it can operate. This limits theminimum output voltage a converter can regulate to while keeping a fixed frequency. The limitation of theminimum on-time is often only considered for the steady-state output voltage; however, when the outputvoltage ramps up, in most cases the output voltage ramps up from 0 V. When the converter tri
  • Not All Jitter Is Created Equal (Rev. A)
    PDF, 555 Kb, Revision: A, File published: Jul 4, 2015
    This application report offers a tutorial discussion on jitter in switching DC-DC converters. Not all power supply designs are equally susceptible to jitter, nor are they equally affected by jitter. Modes of switching jitter are defined and explained for several popular control architectures, which are then analyzed for sources of jitter. An example contrasting the amount of jitter and effect on o
  • Calculating Efficiency
    PDF, 175 Kb, File published: Feb 19, 2010
    This application report provides a step-by-step procedure for calculating buck converter efficiency and power dissipation at operating points not provided by the data sheet.
  • TPS54620 Parallel Operation
    PDF, 412 Kb, File published: Mar 3, 2010
    The TPS54620 is a synchronous, step-down, dc-dc converter with integrated high- and low-side FETs. It is rated for a continuous output of 6 A. In order to increase the output current capability, it is possible to operate two TPS54620 circuits in parallel. Certain techniques are required in the design to ensure that each of the TPS54620 converters provides an equal share of the output current. T
  • Understanding Thermal Dissipation and Design of a Heatsink
    PDF, 59 Kb, File published: May 4, 2011
    Power dissipation performance must be well understood prior to integrating devices on a printed-circuit board (PCB) to ensure that any given device is operated within its defined temperature limits. When a device is running, it consumes electrical energy that is transformed into heat. Most of the heat is typically generated by switching devices like MOSFETs, ICs, etc. This application report discu
  • Measuring the Junction Temperature of the TPS54620
    PDF, 119 Kb, File published: Jan 14, 2010
  • Designing Type III Compensation for Current Mode Step-Down Converters (Rev. A)
    PDF, 298 Kb, Revision: A, File published: Sep 15, 2010
    One of the well-known benefits of current-mode control is that the system stability can be easily achieved by Type II compensation design. It is possible to improve the transient response of a current mode DC/DC converter by adopting Type III compensation to boost the crossover frequency and phase margin. Type III compensation is simple to design and needs only one extra component.

Model Line

Series: TPS54620 (5)

Manufacturer's Classification

  • Semiconductors > Power Management > Non-isolated DC/DC Switching Regulator > Step-Down (Buck) > Buck Converter (Integrated Switch)

Other Names:

9055462001, 905 5462001