Datasheet Texas Instruments LMR24210

ManufacturerTexas Instruments
SeriesLMR24210
Datasheet Texas Instruments LMR24210

SIMPLE SWITCHERВ® 42Vin, 1.0A Step-Down Voltage Regulator in micro SMD

Datasheets

LMR24210 SIMPLE SWITCHER reg; 42Vin, 1.0A Step-Down Voltage Regulator datasheet
PDF, 1.5 Mb, Revision: G, File published: Apr 11, 2013
Extract from the document

Prices

Status

LMR24210TL/NOPBLMR24210TLX/NOPB
Lifecycle StatusActive (Recommended for new designs)Active (Recommended for new designs)
Manufacture's Sample AvailabilityNoYes

Packaging

LMR24210TL/NOPBLMR24210TLX/NOPB
N12
Pin2828
Package TypeYPAYPA
Industry STD TermDSBGADSBGA
JEDEC CodeR-XBGA-NR-XBGA-N
Package QTY2501000
CarrierSMALL T&RSMALL T&R
Device MarkingSJ5BSJ5B
Thickness (mm).36.36
Pitch (mm).5.5
Max Height (mm).675.675
Mechanical DataDownloadDownload

Parametrics

Parameters / ModelsLMR24210TL/NOPB
LMR24210TL/NOPB
LMR24210TLX/NOPB
LMR24210TLX/NOPB
Control ModeCOT with emulated rippleCOT with emulated ripple
Duty Cycle(Max), %9494
Iout(Max), A11
Iq(Typ), mA0.70.7
Operating Temperature Range, C-40 to 125-40 to 125
Package GroupDSBGADSBGA
RatingCatalogCatalog
Regulated Outputs11
Special FeaturesEnable,Synchronous RectificationEnable,Synchronous Rectification
Switching Frequency(Max), kHz10001000
Switching Frequency(Min), kHz100100
TypeConverterConverter
Vin(Max), V4242
Vin(Min), V4.54.5
Vout(Max), V2424
Vout(Min), V0.80.8

Eco Plan

LMR24210TL/NOPBLMR24210TLX/NOPB
RoHSCompliantCompliant

Application Notes

  • AN-643 EMI/RFI Board Design (Rev. B)
    PDF, 742 Kb, Revision: B, File published: May 3, 2004
    Application Note 643 EMI/RFI Board Design
  • Inverting Applications Made SIMPLE With LM4600x and LM4360x (Rev. B)
    PDF, 1.9 Mb, Revision: B, File published: Feb 20, 2015
    Weoftenrequirepowersourceswithnegativeoutputvoltages.Therearemanydifferentwaystoproduceanegativeoutputvoltagefromapositiveinputvoltage.Oneoptionisapolarity-invertingbuck-boostconverter.Theadvantagesofthistopologyarethatitrequireslowcomponentcountandthatitcanbebuiltwithstandardhigh-sideregulato
  • Input and Output Capacitor Selection
    PDF, 219 Kb, File published: Sep 19, 2005
  • AN-1197 Selecting Inductors for Buck Converters (Rev. B)
    PDF, 558 Kb, Revision: B, File published: Apr 23, 2013
    This application report provides design information to help select an off-the-shelf inductor for anycontinuous-mode buck converter application.
  • Thermal Design Made Simple With LM43603 and LM46002
    PDF, 535 Kb, File published: Sep 15, 2014
    This Application Report will walk through the thermal design of power supplies using the LM43603 and LM46002.In the process we will cover common tips and approximations to speed up your design.
  • AN-2155 Layout Tips for EMI Reduction in DC/ DC Converters (Rev. A)
    PDF, 3.6 Mb, Revision: A, File published: Apr 23, 2013
    This application note will explore how the layout of your DC/DC power supply can significantly affect theamount of EMI that it produces. It will discuss several variations of a layout analyze the results andprovide answers to some common EMI questions such whether or not to use a shielded inductor.
  • AN-1566 Techniques for Thermal Analysis of Switching Power Supply Designs (Rev. A)
    PDF, 1.4 Mb, Revision: A, File published: Apr 23, 2013
    This application note provides thermal power analysis techniques for analyzing the power IC.
  • AN-1889 How to Measure the Loop Transfer Function of Power Supplies (Rev. A)
    PDF, 2.7 Mb, Revision: A, File published: Apr 23, 2013
    This application report shows how to measure the critical points of a bode plot with only an audiogenerator (or simple signal generator) and an oscilloscope. The method is explained in an easy to followstep-by-step manner so that a power supply designer can start performing these measurements in a shortamount of time.
  • Semiconductor and IC Package Thermal Metrics (Rev. C)
    PDF, 201 Kb, Revision: C, File published: Apr 19, 2016
  • Cap Drop Offline Supply for E-Meters
    PDF, 291 Kb, File published: Jun 16, 2015
    This design idea provides a simple non-isolated AC/DC power supply for low power applications such assmart grid E-meter applications. The design uses a "capacitive-dropper" front-end combined with aLM46000 SIMPLE SWITCHERВ® buck regulator from Texas Instruments. The circuit provides 3.3 V at aminimum of 50 mA from a line supply of 90 VAC to 265 VAC. Theory of operation as well as designequa
  • Low EMI Layout Made SIMPLE With LM43600/1/2/3 and LM46000/1/2 (Rev. A)
    PDF, 512 Kb, Revision: A, File published: Sep 12, 2014
    Printed Circuit Board (PCB) layout for Switched Mode Power Supplies (SMPS) is critical to achieve proper converter operation good thermal performance and excellent radiated EMI performance. Optimized board layout for low radiated EMI is made very simple by the package and pin arrangement of the SIMPLE SWITCHER Synchronous Buck Converter family LM4360x and LM4600x
  • Absolute Maximum Ratings for Soldering (Rev. D)
    PDF, 52 Kb, Revision: D, File published: Jun 9, 2016
  • Automotive Line Transient Protection Circuit
    PDF, 346 Kb, File published: Jul 1, 2014
    Automobileelectricalpowersystemsaresubjectedtomanytortuousconditionsoverthelifeofthevehicle.Inaddtiontoadverseconditionsonthebatterypowerbus,therearealsooperatingextremesduetoenvironmentalfactorssuchastemperature,humidityandlongtermvehiclestorage.Thisapplicationnotewilldiscusshowthesetransientco
  • Compensation Made SIMPLE With LM4360x, LM4600x
    PDF, 457 Kb, File published: Jul 29, 2014
    Compensating a DC-DC buck converter is challenging if the designer is not familiar with the loop control theory. To achieve a stable design under all corner and adverse conditions, the user must properly compensate the regulator. While DC-DC converters with external compensation provide flexibility, they increase complexity. The LM43600/1/2/3 and LM46000/1/2 are a family of Wide VIN, fully-synchro
  • AN-1149 Layout Guidelines for Switching Power Supplies (Rev. C)
    PDF, 82 Kb, Revision: C, File published: Apr 23, 2013
    When designing a high frequency switching regulated power supply layout is very important. Using agood layout can solve many problems associated with these types of supplies. The problems due to a badlayout are often seen at high current levels and are usually more obvious at large input to output voltagedifferentials. Some of the main problems are loss of regulation at high output current
  • AN-1229 SIMPLE SWITCHER PCB Layout Guidelines (Rev. C)
    PDF, 374 Kb, Revision: C, File published: Apr 23, 2013
    This application report provides SIMPLE SWITCHER™ PCB layout guidelines.
  • AN-2162 Simple Success With Conducted EMI From DC-DC Converters (Rev. C)
    PDF, 2.5 Mb, Revision: C, File published: Apr 24, 2013
    Electromagnetic Interference (EMI) is an unwanted effect between two electrical systems as a result ofeither electromagnetic radiation or electromagnetic conduction. EMI is the major adverse effect caused bythe application of switch-mode power supplies (SMPS). In switching power supplies EMI noise isunavoidable due to the switching actions of the semiconductor devices and resulting disconti
  • AN-1246 Stresses in Wide Input DC-DC Converters (Rev. C)
    PDF, 427 Kb, Revision: C, File published: Apr 23, 2013
    This application note discusses stresses in wide input DC-DC converters.
  • AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Packages (Rev. B)
    PDF, 9.2 Mb, Revision: B, File published: Apr 23, 2013
    This thermal application report provides guidelines for the optimal board layout to achieve the best thermalresistance for exposed packages. The thermal resistance between junction-to-ambient (ОёJA) is highlydependent on the PCB (Printed Circuit Board) design factors. This becomes more critical for packageshaving very low thermal resistance between junction-to-case such as exposed pad TSSOP

Model Line

Series: LMR24210 (2)

Manufacturer's Classification

  • Semiconductors> Power Management> Non-isolated DC/DC Switching Regulator> Step-Down (Buck)> Buck Converter (Integrated Switch)