Datasheet ADE5169, ADE5569 (Analog Devices)
Manufacturer | Analog Devices |
Description | Single-Phase Energy Measurement IC with 8052 MCU, RTC, and LCD Driver |
Pages / Page | 155 / 1 — Single-Phase Energy Measurement IC with. 8052 MCU, RTC, and LCD Driver. … |
Revision | E |
File Format / Size | PDF / 2.4 Mb |
Document Language | English |
Single-Phase Energy Measurement IC with. 8052 MCU, RTC, and LCD Driver. Data Sheet. ADE5169/. ADE5569. GENERAL FEATURES
Model Line for this Datasheet
Text Version of Document
Single-Phase Energy Measurement IC with 8052 MCU, RTC, and LCD Driver Data Sheet ADE5169/ ADE5569 GENERAL FEATURES MICROPROCESSOR FEATURES Wide supply voltage operation: 2.4 V to 3.7 V 8052-based core Internal bipolar switch between regulated and battery inputs Single-cycle 4 MIPS 8052 core Ultralow power operation with power saving modes (PSM) 8052-compatible instruction set Full operation: 4.4 mA to 1.6 mA (PLL clock dependent) 32.768 kHz external crystal with on-chip PLL Battery mode: 3.3 mA to 400 μA (PLL clock dependent) 2 external interrupt sources Sleep mode External reset pin Real-time clock (RTC) mode: 1.7 μA Low power battery mode RTC and LCD mode: 38 μA (LCD charge pump enabled) Wake-up from input/output (I/O), temperature change, Reference: 1.2 V ± 0.1% (10 ppm/°C drift) alarm, and universal asynchronous receiver/transmitter 64-lead, low profile quad flat, RoHS-compliant package (LQFP) (UART) Operating temperature range: −40°C to +85°C LCD driver operation with automatic scrolling Temperature measurement ENERGY MEASUREMENT FEATURES Real-time clock (RTC) Proprietary analog-to-digital converters (ADCs) and digital Counter for seconds, minutes, hours, days, months, signal processing (DSP) provide high accuracy active and years (watt), reactive (var), and apparent energy (volt-ampere Date counter, including leap year compensation (VA)) measurement Automatic battery switchover for RTC backup <0.1% error on active energy over a dynamic range of Operation down to 2.4 V 1000 to 1 at 25°C Ultralow battery supply current: 1.7 μA <0.5% error on reactive energy over a dynamic range of Selectable output frequency: 1 Hz to 16 kHz 1000 to 1 at 25°C (ADE5169 and ADE5569 only ) Embedded digital crystal frequency compensation for <0.5% error on root mean square (rms) measurements calibration and temperature variation of 2 ppm resolution over a dynamic range of 500 to 1 for current (Irms) and Integrated LCD driver 100 to 1 for voltage (Vrms) at 25°C 108-segment driver for the and ADE5569 Supports IEC 62053-21; IEC 62053-22; IEC 62053-23; 104-segment driver for the and ADE5169 EN 50470-3 Class A, Class B, and Class C; and ANSI C12-16 2×, 3×, or 4× multiplexing Differential input with programmable gain amplifiers (PGAs) 4 LCD memory banks for screen scrolling supports shunts, current transformers, and di/dt current LCD voltages generated internally or with external resistors sensors (ADE5169 an d ADE5569 only ) Internal adjustable drive voltages up to 5 V independent 2 current inputs for antitamper detection in the ADE5169 of power supply level High frequency outputs proportional to Irms, active, reactive, On-chip peripherals or apparent power (AP) 2 independent UART interfaces SPI or I2C Table 1. Features Available on Each Device Watchdog timer Watt, VA, di/dt Memory Power supply management with user selectable levels Part No. Antitamper I Memory: 62 kB flash memory, 2.256 kB RAM rms, Vrms Var Sensor Size
ADE5169 Yes Yes Yes Yes 62 kB
Development tools
ADE5569 No Yes Yes Yes 62 kB
Single-pin emulation IDE-based assembly and C source debugging Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2008–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com
Document Outline GENERAL FEATURES ENERGY MEASUREMENT FEATURES MICROPROCESSOR FEATURES REVISION HISTORY GENERAL DESCRIPTION FUNCTIONAL BLOCK DIAGRAMS SPECIFICATIONS ENERGY METERING ANALOG PERIPHERALS DIGITAL INTERFACE TIMING SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE ESD CAUTION PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS TYPICAL PERFORMANCE CHARACTERISTICS TERMINOLOGY SPECIAL FUNCTION REGISTER (SFR) MAPPING POWER MANAGEMENT POWER MANAGEMENT REGISTER DETAILS Writing to the Interrupt Pins Configuration SFR (INTPR, Address 0xFF) Clearing the Scratch Pad Registers (SCRATCH1, Address 0xFB to SCRATCH4, Address 0xFE) Writing to the Power Control SFR (POWCON, Address 0xC5) POWER SUPPLY ARCHITECTURE BATTERY SWITCHOVER Switching from VDD to VBAT Switching from VBAT to VDD POWER SUPPLY MANAGEMENT (PSM) INTERRUPT Battery Switchover and Power Supply Restored PSM Interrupt VDCINADC PSM Interrupt VBAT Monitor PSM Interrupt VDCIN Monitor PSM Interrupt SAG Monitor PSM Interrupt USING THE POWER SUPPLY FEATURES OPERATING MODES PSM0 (NORMAL MODE) PSM1 (BATTERY MODE) PSM2 (SLEEP MODE) 3.3 V PERIPHERALS AND WAKE-UP EVENTS TRANSITIONING BETWEEN OPERATING MODES Automatic Battery Switchover (PSM0 to PSM1) Entering Sleep Mode (PSM1 to PSM2) Servicing Wake-Up Events (PSM2 to PSM1) Automatic Switch to VDD (PSM2 to PSM0) Automatic Switch to VDD (PSM1 to PSM0) USING THE POWER MANAGEMENT FEATURES ENERGY MEASUREMENT ACCESS TO ENERGY MEASUREMENT SFRs ACCESS TO INTERNAL ENERGY MEASUREMENT REGISTERS Writing to the Internal Energy Measurement Registers Reading the Internal Energy Measurement Registers ENERGY MEASUREMENT REGISTERS ENERGY MEASUREMENT INTERNAL REGISTERS DETAILS INTERRUPT STATUS/ENABLE SFRS ANALOG INPUTS ANALOG-TO-DIGITAL CONVERSION Antialiasing Filter ADC Transfer Function Current Channel ADC Voltage Channel ADC Channel Sampling FAULT DETECTION (ADE5169 ONLY) Channel Selection Indication Fault Indication Fault with Active Input Greater Than Inactive Input Fault with Inactive Input Greater Than Active Input Calibration Concerns di/dt CURRENT SENSOR AND DIGITAL INTEGRATOR POWER QUALITY MEASUREMENTS Zero-Crossing Detection Zero-Crossing Timeout Period or Frequency Measurements Line Voltage SAG Detection SAG Level Set Peak Detection Peak Level Set Peak Level Record PHASE COMPENSATION RMS CALCULATION Current Channel RMS Calculation Current Channel RMS Offset Compensation Voltage Channel RMS Calculation Voltage Channel RMS Offset Compensation ACTIVE POWER CALCULATION Active Power Gain Calibration Active Power Offset Calibration Active Power Sign Detection Active Power No Load Detection ACTIVE ENERGY CALCULATION Integration Time Under Steady Load—Active Energy Active Energy Accumulation Modes Watt Signed Accumulation Mode Watt Positive Only Accumulation Mode Watt Absolute Accumulation Mode Active Energy Pulse Output Line Cycle Active Energy Accumulation Mode REACTIVE POWER CALCULATION Reactive Power Gain Calibration Reactive Power Offset Calibration Sign of Reactive Power Calculation Reactive Power Sign Detection Reactive Power No Load Detection REACTIVE ENERGY CALCULATION Integration Time Under Steady Load—Reactive Energy Reactive Energy Accumulation Modes Var Signed Accumulation Mode Var Antitamper Accumulation Mode Var Absolute Accumulation Mode Reactive Energy Pulse Output Line Cycle Reactive Energy Accumulation Mode APPARENT POWER CALCULATION Apparent Power Offset Calibration APPARENT ENERGY CALCULATION Integration Times Under Steady Load—Apparent Energy Apparent Energy Pulse Output Line Cycle Apparent Energy Accumulation Mode Apparent Power No Load Detection AMPERE-HOUR ACCUMULATION ENERGY TO FREQUENCY CONVERSION Pulse Output Configuration Pulse Output Characteristic ENERGY REGISTER SCALING ENERGY MEASUREMENT INTERRUPTS TEMPERATURE, BATTERY, AND SUPPLY VOLTAGE MEASUREMENTS TEMPERATURE MEASUREMENT Single Temperature Measurement Background Temperature Measurements Temperature ADC in PSM0, PSM1, and PSM2 Modes Temperature ADC Interrupt BATTERY MEASUREMENT Single Battery Measurement Background Battery Measurements Battery ADC in PSM0, PSM1, and PSM2 Modes Battery ADC Interrupt EXTERNAL VOLTAGE MEASUREMENT Single External Voltage Measurement Background External Voltage Measurements External Voltage ADC in PSM1 and PSM2 Modes External Voltage ADC Interrupt 8052 MCU CORE ARCHITECTURE MCU REGISTERS BASIC 8052 REGISTERS Program Counter (PC) Instruction Register (IR) Register Banks Accumulator B Register Program Status Word (PSW) Data Pointer (DPTR) Stack Pointer (SP) Stack Boundary Protection STANDARD 8052 SFRS Timer SFRs Serial Port SFRs Interrupt SFR I/O Port SFRs Power Control Register (PCON, Address 0x87) MEMORY OVERVIEW General-Purpose RAM Special Function Registers (SFRs) Extended Internal RAM (XRAM) Code Memory ADDRESSING MODES Immediate Addressing Direct Addressing Indirect Addressing Extended Direct Addressing Extended Indirect Addressing Code Indirect Addressing INSTRUCTION SET READ-MODIFY-WRITE INSTRUCTIONS INSTRUCTIONS THAT AFFECT FLAGS ADD A, Source ADDC A, Source SUBB A, Source MUL AB DIV AB DA A RRC A RLC A CJNE Destination, Source, Relative Jump DUAL DATA POINTERS INTERRUPT SYSTEM STANDARD 8052 INTERRUPT ARCHITECTURE INTERRUPT ARCHITECTURE INTERRUPT REGISTERS INTERRUPT PRIORITY INTERRUPT FLAGS INTERRUPT VECTORS INTERRUPT LATENCY CONTEXT SAVING WATCHDOG TIMER WRITING TO THE WATCHDOG TIMER SFR (WDCON, ADDRESS 0xC0) WATCHDOG TIMER INTERRUPT LCD DRIVER LCD REGISTERS LCD SETUP LCD TIMING AND WAVEFORMS Software Controlled Blink Mode Automatic Blink Mode SCROLLING MODE Automatic Scrolling Mode DISPLAY ELEMENT CONTROL Writing to LCD Data Registers Reading LCD Data Registers VOLTAGE GENERATION Lifetime Performance Power Consumption Contrast Control Lifetime Performance LCD EXTERNAL CIRCUITRY Charge Pump External Resistor Ladder LCD FUNCTION IN PSM2 MODE Example LCD Setup FLASH MEMORY FLASH MEMORY OVERVIEW Flash/EE Memory Reliability FLASH MEMORY ORGANIZATION USING THE FLASH MEMORY ECON—Flash Control SFR Flash Functions Write Byte Erase Page Erase All Read Byte PROTECTING THE FLASH MEMORY Enabling Flash Protection by Code Enabling Flash Protection by Emulator Commands Notes on Flash Protection Flash Memory Timing IN-CIRCUIT PROGRAMMING Serial Downloading TIMERS TIMER REGISTERS TIMER 0 AND TIMER 1 Timer 0 High/Low and Timer 1 High/Low Data Registers Timer/Counter 0 and Timer/Counter 1 Operating Modes Mode 0 (13-Bit Timer/Counter) Mode 1 (16-Bit Timer/Counter) Mode 2 (8-Bit Timer/Counter with Autoreload) Mode 3 (Two 8-Bit Timer/Counters) TIMER 2 Timer/Counter 2 Data Registers Timer/Counter 2 Operating Modes 16-Bit Autoreload Mode 16-Bit Capture Mode PHASE-LOCKED LOOP (PLL) PLL REGISTERS Writing to the Power Control SFR (POWCON, Address 0xC5) REAL-TIME CLOCK (RTC) ACCESS TO RTC SFRs ACCESS TO INTERNAL RTC REGISTERS Writing to Internal RTC Registers Reading Internal RTC Registers RTC SFRS RTC REGISTERS RTC CALENDAR RTC INTERRUPTS Interval Timer Alarm RTC Wake-Up Alarm RTC CRYSTAL COMPENSATION RTC Calibration Calibration Flow UART SERIAL INTERFACE UART SFRs UART OPERATION MODES Mode 0 (Shift Register with Baud Rate Fixed at fCORE/12) Mode 1 (8-Bit UART with Variable Baud Rate) Mode 2 (9-Bit UART with Baud Rate Fixed at fCORE/64 or fCORE/32) Mode 3 (9-Bit UART with Variable Baud Rate) UART BAUD RATE GENERATION Mode 0 Baud Rate Generation Mode 2 Baud Rate Generation Mode 1 and Mode 3 Baud Rate Generation Timer 1 Generated Baud Rates Timer 2 Generated Baud Rates UART Timer Generated Baud Rates UART ADDITIONAL FEATURES Enhanced Error Checking UART TxD Signal Modulation UART2 SERIAL INTERFACE UART2 SFRS UART2 OPERATION MODES 9-Bit UART2 with Variable Baud Rate UART2 BAUD RATE GENERATION UART2 Timer Generated Baud Rates UART2 ADDITIONAL FEATURES Enhanced Error Checking SERIAL PERIPHERAL INTERFACE (SPI) SPI REGISTERS SPI PINS MISO (Master In, Slave Out Data I/O Pin) MOSI (Master Out, Slave In Pin) SCLK (Serial Clock I/O Pin) /SS (Slave Select Pin) SPI MASTER OPERATING MODES Procedures for Using SPI as a Master SingleByte Write Mode, SPICONT (SPIMOD2[7]) = 0 Continuous Mode, SPICONT (SPIMOD2[7]) = 1 SPI INTERRUPT AND STATUS FLAGS I2C-COMPATIBLE INTERFACE SERIAL CLOCK GENERATION SLAVE ADDRESSES I2C REGISTERS READ AND WRITE OPERATIONS Reading the SPI/I2C Receive Buffer SFR (SPI2CRx, Address 0x9B) I2C RECEIVE AND TRANSMIT FIFOS I/O PORTS PARALLEL I/O Weak Internal Pull-Ups Enabled Open Drain (Weak Internal Pull-Ups Disabled) 38 kHz Modulation I/O REGISTERS PORT 0 PORT 1 PORT 2 DETERMINING THE VERSION OF THE ADE5169/ADE5569 OUTLINE DIMENSIONS ORDERING GUIDE