Datasheet TDA2005 (STMicroelectronics) - 2

ManufacturerSTMicroelectronics
Description20 W bridge/stereo amplifier for car radio
Pages / Page25 / 2 — Contents. TDA2005. Schematic and pins connection diagrams . 5. Electrical …
File Format / SizePDF / 649 Kb
Document LanguageEnglish

Contents. TDA2005. Schematic and pins connection diagrams . 5. Electrical specifications . 6. Application suggestion . 15

Contents TDA2005 Schematic and pins connection diagrams  5 Electrical specifications  6 Application suggestion  15

Model Line for this Datasheet

Text Version of Document

link to page 5 link to page 6 link to page 6 link to page 6 link to page 6 link to page 7 link to page 9 link to page 10 link to page 11 link to page 15 link to page 16 link to page 20 link to page 20 link to page 21 link to page 21 link to page 21 link to page 21 link to page 21 link to page 22 link to page 22 link to page 23 link to page 24
Contents TDA2005 Contents 1 Schematic and pins connection diagrams . 5 2 Electrical specifications . 6
2.1 Absolute maximum ratings . 6 2.2 Thermal data . 6 2.3 Bridge amplifier section . 6 2.3.1 Electrical characteristics (bridge application) . 7 2.3.2 Bridge amplifier design . 9 2.4 Stereo amplifier application . 10 2.4.1 Electrical characteristics (stereo application) . 11
3 Application suggestion . 15 4 Application information . 16
4.1 Built-in protection systems . 20 4.1.1 Load dump voltage surge . 20 4.1.2 Short circuit (AC and DC conditions) . 21 4.1.3 Polarity inversion . 21 4.1.4 Open ground . 21 4.1.5 Inductive load . 21 4.1.6 DC voltage . 21 4.1.7 Thermal shut-down . 22 4.1.8 Loudspeaker protection . 22
5 Package information . 23 6 Revision history . 24
2/25 Doc ID 1451 Rev 6 Document Outline Table 1. Device summary 1 Schematic and pins connection diagrams Figure 1. Schematic diagram Figure 2. Pins connection diagram (top view) 2 Electrical specifications 2.1 Absolute maximum ratings Table 2. Absolute maximum ratings 2.2 Thermal data Table 3. Thermal data 2.3 Bridge amplifier section Figure 3. Test and application circuit (bridge amplifier) Figure 4. PC board and components layout of Figure 3 2.3.1 Electrical characteristics (bridge application) Table 4. Electrical characteristics (bridge application) Figure 5. Output offset voltage vs. supply voltage Figure 6. Distortion vs. output power (RL = 4 W) Figure 7. Distortion vs. output power (RL = 3.2 W) 2.3.2 Bridge amplifier design Table 5. Bridge amplifier design Table 6. High gain vs. Rx Figure 8. Bridge configuration 2.4 Stereo amplifier application Figure 9. Typical stereo application circuit 2.4.1 Electrical characteristics (stereo application) Table 7. Electrical characteristics (stereo application) Figure 10. Quiescent output voltage vs. supply voltage (stereo amplifier) Figure 11. Quiescent drain current vs. supply voltage (stereo amplifier) Figure 12. Distortion vs. output power (stereo amplifier) Figure 13. Output power vs. supply voltage, RL = 2 and 4 W (stereo amplifier) Figure 14. Output power vs. supply voltage, RL = 1.6 and 3.2 W (stereo amplifier) Figure 15. Distortion vs. frequency, RL = 2 and 4 W (stereo amplifier) Figure 16. Distortion vs. frequency, RL = 1.6 and 3.2 W (stereo amplifier) Figure 17. Supply voltage rejection vs. C3 (stereo amplifier) Figure 18. Supply voltage rejection vs. frequency (stereo amplifier) Figure 19. Supply voltage rejection vs. C2 and C3, GV = 390/1 W (stereo amplifier) Figure 20. Supply voltage rejection vs. C2 and C3, GV = 1000/10 W (stereo amplifier) Figure 21. Gain vs. input sensitivity RL = 4 W (stereo amplifier) Figure 22. Gain vs. input sensitivity RL = 2 W (stereo amplifier) Figure 23. Total power dissipation and efficiency vs. output power (bridge) Figure 24. Total power dissipation and efficiency vs. output power (stereo) 3 Application suggestion Table 8. Recommended values of the component of the bridge application circuit 4 Application information Figure 25. Bridge amplifier without boostrap Figure 26. PC board and components layout of Figure 25 Figure 27. Low cost bridge amplifier (GV = 42 dB) Figure 28. PC board and components layout of Figure 27 Figure 29. 10 + 10 W stereo amplifier with tone balance and loudness control Figure 30. Tone control response (circuit of Figure 29) Figure 31. 20 W bus amplifier Figure 32. Simple 20 W two way amplifier (FC = 2 kHz) Figure 33. Bridge amplifier circuit suited for low-gain applications (GV = 34 dB) Figure 34. Example of muting circuit 4.1 Built-in protection systems 4.1.1 Load dump voltage surge Figure 35. Suggested LC network circuit Figure 36. Voltage gain bridge configuration 4.1.2 Short circuit (AC and DC conditions) 4.1.3 Polarity inversion 4.1.4 Open ground 4.1.5 Inductive load 4.1.6 DC voltage 4.1.7 Thermal shut-down 4.1.8 Loudspeaker protection Figure 37. Maximum allowable power dissipation vs. ambient temperature Figure 38. Output power and drain current vs. case temperature (RL = 4 W) Figure 39. Output power and drain current vs. case temperature (RL = 3.2 W) 5 Package information Figure 40. Multiwatt11 mechanical data and package dimensions 6 Revision history Table 9. Document revision history