Datasheet ADP1874, ADP1875 (Analog Devices) - 4

ManufacturerAnalog Devices
DescriptionSynchronous Buck Controller with Constant On-Time, Valley Current Mode, and Power Saving Mode
Pages / Page44 / 4 — ADP1874/ADP1875. Data Sheet. Parameter. Symbol. Test Conditions/Comments. …
RevisionA
File Format / SizePDF / 1.8 Mb
Document LanguageEnglish

ADP1874/ADP1875. Data Sheet. Parameter. Symbol. Test Conditions/Comments. Min. Typ. Max. Unit

ADP1874/ADP1875 Data Sheet Parameter Symbol Test Conditions/Comments Min Typ Max Unit

Model Line for this Datasheet

Text Version of Document

link to page 17 link to page 17 link to page 17 link to page 17 link to page 17 link to page 17 link to page 5
ADP1874/ADP1875 Data Sheet Parameter Symbol Test Conditions/Comments Min Typ Max Unit
ADP1874ARQZ-0.6/ 600 kHz ADP1875ARQZ-0.6 (600 kHz) On-Time VIN = 5 V, V = 2 V, T = 25°C 500 540 580 ns OUT J Minimum On-Time VIN = 20 V, V = 0.8 V 82 110 ns OUT Minimum Off-Time 65% duty cycle (maximum) 340 400 ns ADP1874ARQZ-1.0/ 1.0 MHz ADP1875ARQZ-1.0 (1.0 MHz) On-Time VIN = 5 V, V = 2 V, T = 25°C 285 312 340 ns OUT J Minimum On-Time VIN = 20 V 52 85 ns Minimum Off-Time 45% duty cycle (maximum) 340 400 ns OUTPUT DRIVER CHARACTERISTICS High-Side Driver Output Source Resistance2 I = 1.5 A, 100 ns, positive pulse (0 V to 5 V) 2.25 3.5 Ω SOURCE Output Sink Resistance2 I = 1.5 A, 100 ns, negative pulse (5 V to 0 V) 0.70 1 Ω SINK Rise Time3 t BST − SW = 4.4 V, C = 4.3 nF (see Figure 59) 25 ns r, DRVH IN Fall Time3 t BST − SW = 4.4 V, C = 4.3 nF (see Figure 60) 11 ns f, DRVH IN Low-Side Driver Output Source Resistance2 I = 1.5 A, 100 ns, positive pulse (0 V to 5 V) 1.6 2.4 Ω SOURCE Output Sink Resistance2 I = 1.5 A, 100 ns, negative pulse (5 V to 0 V) 0.7 1 Ω SINK Rise Time3 t VREG = 5.0 V, C = 4.3 nF (see Figure 60) 18 ns r,DRVL IN Fall Time3 t VREG = 5.0 V, C = 4.3 nF (see Figure 59) 16 ns f,DRVL IN Propagation Delays DRVL Fall to DRVH Rise3 t BST − SW = 4.4 V (see Figure 59) 15.4 ns tpdhDRVH DRVH Fall to DRVL Rise3 t BST − SW = 4.4 V (see Figure 60) 18 ns tpdhDRVL SW Leakage Current I BST = 25 V, SW = 20 V, VREG = 5 V 110 µA SWLEAK Integrated Rectifier Channel Impedance I = 10 mA 22 Ω SINK PRECISION ENABLE THRESHOLD Logic High Level VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V 570 630 680 mV Enable Hysteresis VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V 31 mV COMP VOLTAGE COMP Clamp Low Voltage V Tie EN pin to VREG to enable device 0.47 V COMP(LOW) (2.75 V ≤ VREG ≤ 5.5 V) COMP Clamp High Voltage V (2.75 V ≤ VREG ≤ 5.5 V) 2.55 V COMP(HIGH) COMP Zero Current Threshold V (2.75 V ≤ VREG ≤ 5.5 V) 1.15 V COMP_ZCT THERMAL SHUTDOWN T TMSD Thermal Shutdown Threshold Rising temperature 155 °C Thermal Shutdown Hysteresis 15 °C CURRENT LIMIT Hiccup Current Limit Timing COMP = 2.4 V 6 ms OVERVOLTAGE AND POWER GOOD PGOOD THRESHOLDS FB Power Good Threshold FB V rising during system power-up 542 568 mV PGD FB FB Power Good Hysteresis 30 mV FB Overvoltage Threshold FB V rising during overvoltage event, I = 1 mA 691 710 mV OV FB PGOOD FB Overvoltage Hysteresis 30 mV PGOOD Low Voltage During Sink V I = 1 mA 143 200 mV PGOOD PGOOD PGOOD Leakage Current PGOOD = 5 V 1 400 nA Rev. A | Page 4 of 44 Document Outline Features Applications General Description Typical Applications Circuit Table of Contents Revision History Specifications Absolute Maximum Ratings Thermal Resistance Boundary Condition ESD Caution Pin Configuration and Function Descriptions Typical Performance Characteristics ADP1874/ADP1875 Block Digram Theory of Operation Startup Soft Start Precision Enable Circuitry Undervoltage Lockout On-Board Low Dropout Regulator Thermal Shutdown Programming Resistor (RES) Detect Circuit Valley Current-Limit Setting Hiccup Mode During Short Circuit Synchronous Rectifier ADP1875 Power Saving Mode (PSM) Timer Operation Pseudo-Fixed Frequency Power Good Monitoring Voltage Tracking Applications Information Feedback Resistor Divider Inductor Selection Output Ripple Voltage (ΔVRR) Output Capacitor Selection Compensation Network Output Filter Impedance (ZFILT) Error Amplifier Output Impedance (ZCOMP) Error Amplifier Gain (Gm) Current-Sense Loop Gain (GCS) Crossover Frequency Efficiency Consideration Channel Conduction Loss MOSFET Driver Loss Switching Loss Diode Conduction Loss Inductor Loss Input Capacitor Selection Thermal Considerations Design Example Input Capacitor Inductor Current Limit Programming Output Capacitor Feedback Resistor Network Setup Compensation Network Loss Calculations External Component Recommendations Layout Considerations IC Section (Left Side of Evaluation Board) Power Section Differential Sensing Typical Application Circuits 12 A, 300 kHz High Current Application Circuit 5.5 V Input, 600 kHz Application Circuit 300 kHz High Current Application Circuit Outline Dimensions Ordering Guide