6EDL7141DatasheetProduct Feature Summary3 phase smart gate driver o 5.5 V to 60 V operating supply voltage (recommended operating condition) o 1.5 A sink/ 1.5 A source peak gate driver currents o Programmable driving voltage (7 V, 10 V, 12 V, 15 V) o Independently programmable high side/low side slew rate control o Independently programmable dead time for turn on/off switching o Control using 3PWM or 6PWM inputs up to 200 kHz o Built-in commutation tables for using 1PWM with or without Hall sensors Integrated power supplies o High efficiency synchronous buck converter with programmable switching frequency. Supplies gate driver charge pumps, DVDD linear regulator and both internal and external components o Linear regulator with 300 mA current capability for MCU and other components supply (DVDD) o Dual charge pump for supplying gate driver even at low supply voltage Three integrated current sense amplifiers o Adjustable gain and offset o Configurable low side RDSON sensing Three integrated Hall sensor comparators Integrated ADC for signal monitoring Locked rotor detection 3.3 V/5 V compatible digital interface Programmable SPI digital interface Protection features: o External brake with programmable braking response o Over-Current Protection (OCP) on current sense amplifiers (programmable) o Over-Current Protection (OCP) for buck converter and DVDD linear regulator (programmable) o Under-Voltage Lockouts (UVLO) for internal and external supplies o Over-Voltage Fault (OVLO) reporting for buck converter and DVDD linear regulator o Over-Temperature warning and shutdown (OTW, OTS) o Programmable watchdog timer o Reporting through nFAULT and SPI registers Thermally enhanced 48pin VQFN package Datasheet Please read the Important Notice and Warnings at the end of this document <Revision 1.00> www.infineon.com <2021-06-02> Document Outline Product Feature Summary Potential Applications Product Description System Block Diagram Package Description 1 Pin Configuration 1.1 Pin Assignment 1.2 Pin Definitions and Functions 2 General Product Characteristics 2.1 Absolute Maximum Ratings 2.2 Recommended Operating Conditions 2.3 ESD Robustness 2.4 Thermal Resistance 2.5 Electrical Characteristics 2.6 Electrical Characteristic Graphs 3 Product Features 3.1 Functional Block Diagram 3.2 PWM Modes 3.2.1 PWM with 6 Independent Inputs – 6PWM 3.2.2 PWM with 3 Independent Inputs – 3PWM 3.2.3 PWM with 1 Input and Commutation Pattern – 1PWM 3.2.4 PWM with 1 Input and Commutation with Hall Sensor Inputs – 1PWM with Hall Sensors 3.2.5 PWM with 1 Input and Commutation with Hall Sensor Inputs and Alternating Recirculation – 1PWM with Hall Sensors and Alternating Recirculation 3.2.6 PWM Braking Modes 3.2.7 Dead Time Insertion 3.3 Integrated Three Phase Gate Driver 3.3.1 Gate Driver Architecture 3.3.2 Slew Rate Control 3.3.2.1 Slew Rate Control Parameters and Usage 3.3.3 Gate Driver Voltage Programmability 3.4 Charge Pump Configuration 3.4.1 Charge Pump Clock Frequency Selection 3.4.2 Charge Pump Clock Spread Spectrum Feature 3.4.3 Charge Pump Pre-Charge for VCCLS 3.4.4 Charge Pump Tuning 3.4.5 Gate Driver and Charge Pumps Protections 3.4.5.1 VCCLS Under-Voltage Lock-Out (VCCLS UVLO) 3.4.5.2 VCCHS Under-Voltage Lock-Out (VCCLS UVLO) 3.4.5.3 Floating Gate Strong Pull Down 3.5 Power Supply System 3.5.1 Synchronous Buck Converter Description 3.5.1.1 Buck Converter Output Voltage Dependency on PVCC_SETPT 3.5.1.2 Synchronous Buck Converter Protections 3.5.2 DVDD Linear Regulator 3.5.2.1 DVDD Linear Regulator OCP 3.6 Current Sense Amplifiers 3.6.1 RDSON Sensing Mode vs Leg Shunt Mode 3.6.2 Current Shunt Amplifier Timing Mode 3.6.3 Current Shunt Amplifier Blanking Time 3.6.4 Current Sense Amplifier Offset Generation: Internal or External (VREF pin) 3.6.5 Overcurrent Comparators and DAC for Current Sense Amplifiers 3.6.5.1 OCP Use Cases 3.6.5.2 OCP Fault Reporting 3.6.5.3 OCP Fault Latching 3.6.5.4 PWM Truncation 3.6.6 Current Sense Amplifier Gain Selection 3.6.7 Current Sense Amplifier DC Calibration 3.6.8 Auto-Zero Compensation of Current Sense Amplifier 3.6.8.1 Internal Auto-Zero 3.6.8.2 External Auto-Zero Synchronization via CS_GAIN/AZ Pin 3.6.8.3 External Auto-Zero Synchronization via CS_GAIN/AZ Pin with Enhanced Sensing 3.7 Hall Comparators 3.8 Watchdog Timers 3.8.1 Buck converter watchdog 3.8.2 General Purpose Watchdog 3.8.3 Locked-Rotor Protection Watchdog Timer 3.9 Multi-Function Pins 3.9.1 EN_DRV Pin 3.9.2 VSENSE/nBRAKE Pin 3.9.3 CS_GAIN/AZ Pin 3.10 ADC Module-Analog to Digital Converter 3.10.1 ADC Measurement Sequencing and On Demand Conversion 3.10.2 Die Temperature Sensor 4 Device Start-Up 4.1 Power Supply Start-Up 4.2 Gate Driver and CSAMP Start-up 5 Device Functional States 6 Protections and Faults Handling 7 Device Programming-OTP and SPI interface 7.1.1 OTP User Programming Procedure: Loading Custom Default Values 7.1.2 SPI Communication 7.1.2.1 SPI Communication Example 8 Register Map 8.1 Device Programmability 8.2 Register Map Faults Status Register Temperature Status Register Power Supply Status Register Functional Status Register OTP Status Register ADC Status Register Charge Pumps Status Register Device ID Register Faults Clear Register Power Supply Configuration Register ADC Configuration Register PWM Configuration Register Sensor Configuration Register Watchdog Configuration Register Watchdog Configuration Register 2 Gate Driver Current Control Register Gate Driver Pre-Charge Current Control Register TDRIVE Source Control Register TDRIVE Sink Control Register Dead Time Register Charge Pump Configuration Register Current Sense Amplifier Configuration Register Current Sense Amplifier Configuration Register 2 OTP Program Register 9 Application Description 9.1 Recommended External Components 9.2 PCB Layout Recommendations 9.3 Typical Applications 10 ESD Protection 11 Package Information Revision history