Datasheet Texas Instruments SN74ALVC125D

ManufacturerTexas Instruments
SeriesSN74ALVC125
Part NumberSN74ALVC125D
Datasheet Texas Instruments SN74ALVC125D

Quadruple Bus Buffer Gates With 3-State Outputs 14-SOIC -40 to 85

Datasheets

SN74ALVC125 datasheet
PDF, 615 Kb, Revision: H, File published: Sep 17, 2004
Extract from the document

Prices

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityNo

Packaging

Pin14
Package TypeD
Industry STD TermSOIC
JEDEC CodeR-PDSO-G
Package QTY50
CarrierTUBE
Device MarkingALVC125
Width (mm)3.91
Length (mm)8.65
Thickness (mm)1.58
Pitch (mm)1.27
Max Height (mm)1.75
Mechanical DataDownload

Parametrics

Bits4
F @ Nom Voltage(Max)100 Mhz
ICC @ Nom Voltage(Max)0.01 mA
Operating Temperature Range-40 to 85 C
Output Drive (IOL/IOH)(Max)-24/24 mA
Package GroupSOIC
Package Size: mm2:W x L14SOIC: 52 mm2: 6 x 8.65(SOIC) PKG
RatingCatalog
Schmitt TriggerNo
Technology FamilyALVC
VCC(Max)3.6 V
VCC(Min)1.65 V
Voltage(Nom)1.8,2.5,2.7,3.3 V
tpd @ Nom Voltage(Max)5.3,3.2,3.1,2.8 ns

Eco Plan

RoHSCompliant

Design Kits & Evaluation Modules

  • Evaluation Modules & Boards: TMDXEVM388
    DM388 DaVinci Digital Media Processor Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)

Application Notes

  • TI SN74ALVC16835 Component Specification Analysis for PC100
    PDF, 43 Kb, File published: Aug 3, 1998
    The PC100 standard establishes design parameters for the PC SDRAM DIMM that is designed to operate at 100 MHz. The 168-pin, 8-byte, registered SDRAM DIMM is a JEDEC-defined device (JC-42.5-96-146A). Some of the defined signal paths include data signals, address signals, and control signals. This application report discusses the SN74ALVC16835 18-bit universal bus driver that is available from T
  • Logic Solutions for PC-100 SDRAM Registered DIMMs (Rev. A)
    PDF, 96 Kb, Revision: A, File published: May 13, 1998
    Design of high-performance personal computer (PC) systems that are capable of meeting the needs imposed by modern operating systems and software includes the use of large banks of SDRAMs on DIMMs (see Figure 1).To meet the demands of stable functionality over the broad spectrum of operating environments, meet system timing needs, and to support data integrity, the loads presented by the large
  • 16-Bit Widebus Logic Families in 56-Ball 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B)
    PDF, 895 Kb, Revision: B, File published: May 22, 2002
    TI?s 56-ball MicroStar Jr.E package registered under JEDEC MO-225 has demonstrated through modeling and experimentation that it is an optimal solution for reducing inductance and capacitance improving thermal performance and minimizing board area usage in integrated bus functions. Multiple functions released in the 56-ball MicroStar Jr.E package have superior performance characteristics compa
  • Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A)
    PDF, 154 Kb, Revision: A, File published: Sep 8, 1999
    In the last few years the trend toward reducing supply voltage (VCC) has continued as reflected in an additional specification of 2.5-V VCC for the AVC ALVT ALVC LVC LV and the CBTLV families.In this application report the different logic levels at VCC of 5 V 3.3 V 2.5 V and 1.8 V are compared. Within the report the possibilities for migration from 5-V logic and 3.3-V logic families
  • Understanding Advanced Bus-Interface Products Design Guide
    PDF, 253 Kb, File published: May 1, 1996

Model Line

Manufacturer's Classification

  • Semiconductors > Logic > Buffer/Driver/Transceiver > Non-Inverting Buffer/Driver