Datasheet Texas Instruments MSP430G2133IN20

ManufacturerTexas Instruments
SeriesMSP430G2133
Part NumberMSP430G2133IN20
Datasheet Texas Instruments MSP430G2133IN20

MSP430G2x33, MSP430G2x03 Mixed Signal Microcontroller 20-PDIP -40 to 85

Datasheets

Datasheet

Prices

Status

Lifecycle StatusObsolete (Manufacturer has discontinued the production of the device)
Manufacture's Sample AvailabilityNo

Packaging

Pin20
Package TypeN
Industry STD TermPDIP
JEDEC CodeR-PDIP-T
Device MarkingM430G2133
Width (mm)6.35
Length (mm)24.33
Thickness (mm)4.57
Pitch (mm)2.54
Max Height (mm)5.08
Mechanical DataDownload

Eco Plan

RoHSNot Compliant
Pb FreeNo

Design Kits & Evaluation Modules

  • Evaluation Modules & Boards: 430BOOST-CC110L
    CC110L RF BoosterPack
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: 430BOOST-SENSE1
    MSP430 Capacitive Touch BoosterPack
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: MSP-EXP430G2
    MSP430 LaunchPad Value Line Development kit
    Lifecycle Status: Active (Recommended for new designs)
  • JTAG Emulators/ Analyzers: ENERGYTRACE
    MSP EnergyTrace Technology
    Lifecycle Status: Active (Recommended for new designs)

Application Notes

  • Capacitive Touch Sensing, MSP430 Button Gate Time Optimization and Tuning Guide
    PDF, 1.1 Mb, File published: May 21, 2013
    MSP430в„ў microcontroller based capacitive touch buttons can offer increased performance when properly optimized and tuned for their specific application. Performance benefits that result from button optimization can include, but are not limited to, decreased power consumption, improved response time, and the ability to grow a design to include more buttons. This application report provides th
  • Capacitive Touch Sensing, MSP430 Slider and Wheel Tuning Guide
    PDF, 1.0 Mb, File published: May 21, 2013
    This application report provides guidelines on how to tune capacitive touch sliders and wheels running on the MSP430в„ў microcontrollers. It identifies the hardware and software parameters as well as explains the steps used in tuning sliders and wheels.The slider and wheel tuning is based on the APIs defined within the Capacitive Touch Sense Library (CAPSENSELIBRARY).
  • Capacitive Touch Hardware Design Guide (Rev. A)
    PDF, 784 Kb, Revision: A, File published: Nov 17, 2015
    Capacitive touch detection is sometimes considered more art than science. This often results in multiple design iterations before the optimum performance is achieved. There are, however, good design practices for circuit layout and principles of materials that need to be understood to keep the number of iterations to a minimum. This design guide describes a process for creating and designing capac
  • 1-uA Capacitive Grip Detection Based on MSP430 Microcontrollers (Rev. B)
    PDF, 373 Kb, Revision: B, File published: Aug 14, 2013
    This application report discusses how to design a simple and ultra low-power grip detector BoosterPack for the MSP430 LaunchPadв„ў. The PINOSC feature in every msp430G2xx2 and msp430G2xx3 device makes it possible to eliminate all the external components when implementing a capacitive touch design. All the components used in the grip detector, such as capacitive sensors, LEDs are all integrate

Model Line

Manufacturer's Classification

  • Semiconductors > Microcontrollers (MCU) > MSP430 ultra-low-power MCUs > MSP430G2x/i2x