Datasheet Texas Instruments TMS320C6414TBCLZA7

ManufacturerTexas Instruments
SeriesTMS320C6414T
Part NumberTMS320C6414TBCLZA7

Fixed-Point Digital Signal Processor 532-FC/CSP -40 to 105

Datasheets

TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point Digital Signal Processors datasheet
PDF, 2.0 Mb, Revision: M, File published: Apr 6, 2009
Extract from the document

Prices

Status

Lifecycle StatusPreview (Device has been announced but is not in production. Samples may or may not be available)
Manufacture's Sample AvailabilityNo

Packaging

Pin532532532532
Package TypeCLZCLZCLZCLZ
Industry STD TermFC/CSPFC/CSPFC/CSPFC/CSP
JEDEC CodeS-PBGA-NS-PBGA-NS-PBGA-NS-PBGA-N
Package QTY60606060
Device MarkingA75TMS320C6414TCLZ@2003 TI
Width (mm)23232323
Length (mm)23232323
Thickness (mm)2.612.612.612.61
Pitch (mm).8.8.8.8
Max Height (mm)3.253.253.253.25
Mechanical DataDownloadDownloadDownloadDownload

Parametrics

DSP1 C64x
RatingCatalog

Eco Plan

RoHSCompliant

Design Kits & Evaluation Modules

  • JTAG Emulators/ Analyzers: XDS560TRACE
    XDS560 Trace Emulator
    Lifecycle Status: Obsolete (Manufacturer has discontinued the production of the device)
  • Evaluation Modules & Boards: TMDSDSK6416
    TMS320C6416 DSP Starter Kit (DSK)
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: TMDXEVM6452
    C6452 DSP Evaluation Module
    Lifecycle Status: Active (Recommended for new designs)
  • JTAG Emulators/ Analyzers: TMDSEMU560V2STM-UE
    XDS560v2 System Trace USB & Ethernet Debug Probe
    Lifecycle Status: Active (Recommended for new designs)
  • JTAG Emulators/ Analyzers: TMDSEMU560V2STM-U
    XDS560v2 System Trace USB Debug Probe
    Lifecycle Status: Active (Recommended for new designs)

Application Notes

  • TMS320C6414T/15T/16T Power Consumption Summary (Rev. A)
    PDF, 119 Kb, Revision: A, File published: Feb 18, 2008
    This document discusses the power consumption of the Texas Instruments TMS320C6414Tв„ў, TMS320C6415Tв„ў, and TMS320C6416Tв„ў digital signal processors (DSPs). Power consumption on these devices is highly application dependent, so a spreadsheet is provided to model power consumption for a user's application. To get good results from the spreadsheet, realistic usage parameters must be entered. The low cor
  • Migrating from TMS320C6416/15/14 to TMS320C6416T/15T/14T (Rev. B)
    PDF, 84 Kb, Revision: B, File published: Feb 22, 2008
    This application report describes issues of interest related to migration from the TMS320C6416/15/14 to the TMS320C6416T/15T/14T device. The objective of this document is to indicate differences between the two device families. Functions that are identical between the two devices are not included. For detailed information on the specific functions of either device, see the TMS320C6414, TMS320C6
  • TMS320C64x DSP Host Port Interface (HPI) Performance
    PDF, 206 Kb, File published: Oct 24, 2003
    This application report describes the number of CPU cycles required to perform a given host port interface (HPI) data transfer based on a variety of permutations of burst length, CPU speed, EMIF speed, etc.The HPI provides direct connectivity between a host processor and a CPU?s memory space via a 32/16-bit parallel port. The HPI throughput between a host processor and the TMS320C64xв„ў DSP
  • TMS320C6000 EDMA IO Scheduling and Performance
    PDF, 269 Kb, File published: Mar 5, 2004
    The enhanced DMA (EDMA) is a highly efficient and parallel data transfer engine. To make the best use of its resources, it is necessary to understand the architecture and schedule transfers intelligently. This document details how to summarize, analyze, and schedule system traffic to produce efficient designs. An example audio/video system is presented and analyzed in full. Finally, EDMA performan
  • Introduction to TMS320C6000 DSP Optimization
    PDF, 535 Kb, File published: Oct 6, 2011
    The TMS320C6000™ Digital Signal Processors (DSPs) have many architectural advantages that make them ideal for computation-intensive real-time applications. However to fully leverage the architectural features that C6000™ processors offer code optimization may be required. First this document reviews five key concepts in understanding the C6000 DSP architecture and optimization. Then

Model Line

Manufacturer's Classification

  • Semiconductors > Processors > Digital Signal Processors > C6000 DSP > Other C6000 DSP