Datasheet Texas Instruments MSP430FR59721IPM
Manufacturer | Texas Instruments |
Series | MSP430FR59721 |
Part Number | MSP430FR59721IPM |
MSP430FR59721 16 MHz Ultra-Low-Power MCUfeaturing 64KB FRAM, 2KB SRAM, 51IO, ADC12, AES 64-LQFP -40 to 85
Datasheets
MSP430FR597x(1),MSP430FR592x(1) MSP430FR587x(1) Mixed‑Signal Microcontrollers datasheet
PDF, 2.6 Mb, Revision: B, File published: Jan 24, 2017
Extract from the document
Prices
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
Packaging
Pin | 64 |
Package Type | PM |
Industry STD Term | LQFP |
JEDEC Code | S-PQFP-G |
Package QTY | 160 |
Device Marking | FR59721 |
Width (mm) | 10 |
Length (mm) | 10 |
Thickness (mm) | 1.4 |
Pitch (mm) | .5 |
Max Height (mm) | 1.6 |
Mechanical Data | Download |
Parametrics
ADC | ADC12 - 8ch |
AES | AES256 |
Active Power | 101.25 uA/MHz |
Additional Features | Real-Time Clock,Watchdog,Temp Sensor,Brown Out Reset,IrDA,IP Protection |
BSL | I2C |
CPU | MSP430 |
Comparators | 8 |
DMA | 3 |
Featured | fr5 |
Frequency | 16 MHz |
GPIO Pins | 51 |
I2C | 2 |
Max VCC | 3.6 |
Min VCC | 1.8 |
Multiplier | 32x32 |
Non-volatile Memory | 64 KB |
Operating Temperature Range | -40 to 85 C |
Package Group | LQFP |
Package Size: mm2:W x L | 64LQFP: 144 mm2: 12 x 12(LQFP) PKG |
RAM | 2 KB |
Rating | Catalog |
SPI | 4 |
Security Enabler | Cryptographic acceleration,Debug security,Physical security,Secure FW and SW update,Software IP protection |
Special I/O | N/A |
Standby Power | 0.5 LPM3-uA |
Timers - 16-bit | 5 |
UART | 2 |
Wakeup Time | 7 us |
Eco Plan
RoHS | Compliant |
Design Kits & Evaluation Modules
- Evaluation Modules & Boards: MSP-FET430U64F
MSP-FET430U64F - MSP430 64-pin FRAM TS Board and MSP-FET Bundle (Microcontrollers not included)
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: MSP-TS430PM64F
MSP-TS430PM64F - MSP430 64-pin FRAM Target Socket Board (Microcontrollers not included)
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: MSP-EXP430FR6989
MSP430FR6989 LaunchPad Development Kit
Lifecycle Status: Active (Recommended for new designs) - JTAG Emulators/ Analyzers: ENERGYTRACE
MSP EnergyTrace Technology
Lifecycle Status: Active (Recommended for new designs)
Application Notes
- Secure In-Field Firmware Updates for MSP MCUsPDF, 223 Kb, File published: Nov 17, 2015
In-field firmware update is a feature that is increasingly used in microcontroller-based applications today and important benefits include service and support to products that are already deployed in the field (for example, being able to correct bugs or add new functionalities). As common as in-field firmware updates are in embedded systems, this feature is also commonly exploited by attackers; if - Random Number Generation Using MSP430FR59xx and MSP430FR69xx MicrocontrollersPDF, 113 Kb, File published: Jan 18, 2017
Random number generation has a role in a variety of applications, such as cryptography and tamper detection.In digital systems, it becomes difficult to introduce the concept of true randomness as a machine executes code in the sequence it is programed. This introduces the notion of true random number generators (TRNGs) and pseudorandom number generators (PRNGs), also known as deterministic rando - Getting Started With EEMBC ULPBench on MSP-EXP430FR5969 (Rev. A)PDF, 381 Kb, Revision: A, File published: Jan 29, 2015
This is a getting started guide for obtaining the ULPMarkв„ў-CP score using the Embedded Microprocessor Benchmark Consortium (EEMBC) ULPBench and EnergyMonitor with the MSP430FR5969 microcontroller (MCU). This document uses the MSP-EXP430FR5969 LaunchPad development kit as the target evaluation module (EVM) for performing the benchmark.Migrating From MSP430F4xx Family to MSP430FR58xx/FR59xx/FR68xx/FR69xx Family (Rev. B)PDF, 183 Kb, Revision: B, File published: Nov 3, 2016
This application report enables easy migration from MSP430F4xx flash-based MCUs to the MSP430FR58xx/59xx/68xx/69xx family of FRAM-based MCUs. The intent is to highlight key differences between the two families. For more information on the use of the MSP430FR58xx/FR59xx/68xx/69xx devices, see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide.Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx ADC (Rev. A)PDF, 137 Kb, Revision: A, File published: Mar 30, 2016
Designing an application with the analog-to-digital converter (ADC) requires several considerations to optimize for power and performance. This application report discusses the basics of how you would analyze a data sheet and user's guide to design your application. It goes into the fundamentals of how to optimize your design based on the external requirements and available ADC configurations. TheMSP430 Advanced Power Optimizations: ULP Advisor SW and EnergyTrace TechnologyPDF, 4.0 Mb, File published: Jun 9, 2014
MSP430 microcontrollers are designed specifically for ultra-low-power applications. Features such as multiple low-power modes, instant wakeup, intelligent autonomous peripherals, and much more to enable such ultra-low-power capabilities. Texas Instruments provides valuable tools to help the programmer fully use these benefits and optimize power consumption of the target application. This appMSP430 FRAM Technology – How To and Best PracticesPDF, 326 Kb, File published: Jun 23, 2014
FRAM is a non-volatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 from an embedded software development perspective. It discusses how to implement a memory layout according to application-specifMSP430 FRAM Quality and Reliability (Rev. A)PDF, 295 Kb, Revision: A, File published: May 1, 2014
FRAM is a nonvolatile embedded memory technology and is known for its ability to be ultra-low power while being the most flexible and easy-to-use universal memory solution available today. This application report is intended to give new FRAM users and those migrating from flash-based applications knowledge on how FRAM meets key quality and reliability requirements such as data retention and enduraDesigning With MSP430 and Segment LCDs (Rev. A)PDF, 2.1 Mb, Revision: A, File published: Jul 20, 2015
Segment liquid crystal displays (LCDs) are needed to provide information to users in a wide variety of applications from smart meters to electronic shelf labels (ESL) to medical equipment. Several MSP430в„ў microcontroller families include built-in low-power LCD driver circuitry that allows the MSP430 MCU to directly control the segmented LCD glass. This application note helps explain how segmentedMigrating from the MSP430F5xx,F6xx Family to the MSP430FR58xx/FR59xx/68xx Family (Rev. D)PDF, 151 Kb, Revision: D, File published: Nov 3, 2016
This application report helps enable easy migration from MSP430F5xx and MSP430F6xx flash-based MCUs to the MSP430FR58xx/FR59xx/68xx/69xx FRAM-based MCUs. For the migration guide to MSP430FR57xx, see Migrating From the MSP430F2xx Family to the MSP430FR57xx Family. It covers programming, system, and peripheral considerations when migrating firmware. The intent is to highlight differences between theMigrating from the MSP430F2xx,G2xx Family to the MSP430FR58xx/FR59xx/68xx/69xx (Rev. E)PDF, 179 Kb, Revision: E, File published: Nov 3, 2016
This application report enables easy migration from MSP430F2xx flash-based MCUs to the MSP430FR58xx/FR59xx/68xx/69xx family of FRAM-based MCUs. For the migration guide to MSP430FR57xx, see Migrating From the MSP430F2xx Family to the MSP430FR57xx Family. It covers programming, system, and peripheral considerations when migrating firmware. The intent is to highlight key differences between the two fModel Line
Series: MSP430FR59721 (3)- MSP430FR59721IPM MSP430FR59721IPMR MSP430FR59721IRGCR
Manufacturer's Classification
- Semiconductors > Microcontrollers (MCU) > MSP430 ultra-low-power MCUs > MSP430FRxx FRAM