Datasheet Texas Instruments ADS5444IPFPR
Manufacturer | Texas Instruments |
Series | ADS5444 |
Part Number | ADS5444IPFPR |
13-Bit, 250-MSPS Analog-to-Digital Converter (ADC) 80-HTQFP -40 to 85
Datasheets
13-Bit 250 MSPS Analog-to-Digital Converter datasheet
PDF, 1.2 Mb, Revision: A, File published: Feb 28, 2006
Extract from the document
Prices
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
Packaging
Pin | 80 |
Package Type | PFP |
Industry STD Term | HTQFP |
JEDEC Code | S-PQFP-G |
Package QTY | 1000 |
Carrier | LARGE T&R |
Device Marking | ADS5444IPFP |
Width (mm) | 12 |
Length (mm) | 12 |
Thickness (mm) | 1 |
Pitch (mm) | .5 |
Max Height (mm) | 1.2 |
Mechanical Data | Download |
Parametrics
# Input Channels | 1 |
Analog Input BW | 500 MHz |
Architecture | Pipeline |
DNL(Max) | 1 +/-LSB |
DNL(Typ) | 0.4 +/-LSB |
ENOB | 11.1 Bits |
INL(Max) | 2.2 +/-LSB |
INL(Typ) | 0.9 +/-LSB |
Input Buffer | Yes |
Input Range | 2.2 Vp-p |
Interface | Parallel LVDS |
Operating Temperature Range | -40 to 85 C |
Package Group | HTQFP |
Package Size: mm2:W x L | 80HTQFP: 196 mm2: 14 x 14(HTQFP) PKG |
Power Consumption(Typ) | 2250 mW |
Rating | Catalog |
Reference Mode | Int |
Resolution | 13 Bits |
SFDR | 77 dB |
SINAD | 67.6 dB |
SNR | 69 dB |
Sample Rate(Max) | 250 MSPS |
Eco Plan
RoHS | Compliant |
Design Kits & Evaluation Modules
- Evaluation Modules & Boards: TSW2200EVM
TSW2200 Low-Cost Portable Power Supply Evaluation Module
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: ADS5474EVM
ADS5474 14-Bit, 400-MSPS Analog-to-Digital Converter Evaluation Module
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: ADS5463EVM
ADS5463 12-Bit, 500-MSPS Analog-to-Digital Converter Evaluation Module
Lifecycle Status: Active (Recommended for new designs)
Application Notes
- High-Speed Analog-to-Digital Converter BasicsPDF, 1.1 Mb, File published: Jan 11, 2012
The goal of this document is to introduce a wide range of theories and topics that are relevant tohigh-speed analog-to-digital converters (ADC). This document provides details on sampling theorydata-sheet specifications ADC selection criteria and evaluation methods clock jitter and other commonsystem-level concerns. In addition some end-users will want to extend the performance capabil - Design Considerations for Avoiding Timing Errors during High-Speed ADC, LVDS Dat (Rev. A)PDF, 2.0 Mb, Revision: A, File published: May 22, 2015
- Why Use Oversampling when Undersampling Can Do the Job? (Rev. A)PDF, 1.2 Mb, Revision: A, File published: Jul 19, 2013
- Smart Selection of ADC/DAC Enables Better Design of Software-Defined RadioPDF, 376 Kb, File published: Apr 28, 2009
This application report explains different aspects of selecting analog-to-digital and digital-to-analog data converters for Software-Defined Radio (SDR) applications. It also explains how ADS61xx ADCs and the DAC5688 from Texas Instruments fit properly for SDR designs. - Driving High-Speed ADCs: Circuit Topologies and System-Level Parameters (Rev. A)PDF, 327 Kb, Revision: A, File published: Sep 10, 2010
This application report discusses the performance-related aspects of passive and active interfaces at the analog input of high-speed pipeline analog-to-digital converters (ADCs). The report simplifies the many possibilities into two main categories: passive and active interface circuits. The first section of the report gives an overview of equivalent models of buffered and unbuffered ADC input cir - Phase Noise Performance and Jitter Cleaning Ability of CDCE72010PDF, 2.3 Mb, File published: Jun 2, 2008
This application report presents phase noise data taken on the CDCE72010 jitter cleaner and synchronizer PLL device. The phase noise performance of the CDCE72010 depends on the phase noise of the reference clock VCXO clock and the CDCE72010 itself. This application report shows the phase noise performance at several of the most popular CDMA frequencies. This data helps the user to choose the rig - CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital ConvertersPDF, 424 Kb, File published: Jun 8, 2008
Texas Instruments has recently introduced a family of devices suitable to meet the demands of high-speed high-IF sampling analog-to-digital converters (ADCs) such as the ADS5483 which is capable of sampling up to 135 MSPS. To realize the full potential of these high-performance devices the system must provide an extremely low phase noise clock source. The CDCE72010 clock synthesizer chip offers - Principles of Data Acquisition and Conversion (Rev. A)PDF, 132 Kb, Revision: A, File published: Apr 16, 2015
- A Glossary of Analog-to-Digital Specifications and Performance Characteristics (Rev. B)PDF, 425 Kb, Revision: B, File published: Oct 9, 2011
This glossary is a collection of the definitions of Texas Instruments' Delta-Sigma (О”ОЈ), successive approximation register (SAR), and pipeline analog-to-digital (A/D) converter specifications and performance characteristics. Although there is a considerable amount of detail in this document, the product data sheet for a particular product specification is the best and final reference. - Analog-to-Digital Converter Grounding Practices Affect System Performance (Rev. A)PDF, 69 Kb, Revision: A, File published: May 18, 2015
Model Line
Series: ADS5444 (2)
- ADS5444IPFP ADS5444IPFPR
Manufacturer's Classification
- Semiconductors > Data Converters > Analog-to-Digital Converters (ADCs) > High Speed ADCs (>10MSPS)