Datasheet Texas Instruments OPA690IDRG4

ManufacturerTexas Instruments
SeriesOPA690
Part NumberOPA690IDRG4
Datasheet Texas Instruments OPA690IDRG4

Wideband, Voltage Feedback Operational Amplifier With Disable 8-SOIC -40 to 85

Datasheets

OPA690 Wideband, Voltage-Feedback Operational Amplifier With Disable datasheet
PDF, 1.4 Mb, Revision: G, File published: Aug 10, 2016
Extract from the document

Prices

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityNo

Packaging

Pin88
Package TypeDD
Industry STD TermSOICSOIC
JEDEC CodeR-PDSO-GR-PDSO-G
Package QTY25002500
CarrierLARGE T&RLARGE T&R
Device MarkingOPA690
Width (mm)3.913.91
Length (mm)4.94.9
Thickness (mm)1.581.58
Pitch (mm)1.271.27
Max Height (mm)1.751.75
Mechanical DataDownloadDownload

Parametrics

2nd Harmonic68 dBc
3rd Harmonic70 dBc
@ MHz5
Acl, min spec gain1 V/V
Additional FeaturesShutdown
ArchitectureBipolar,Voltage FB
BW @ Acl500 MHz
CMRR(Min)60 dB
CMRR(Typ)65 dB
GBW(Typ)500 MHz
Input Bias Current(Max)10000000 pA
Iq per channel(Max)5.8 mA
Iq per channel(Typ)5.5 mA
Number of Channels1
Offset Drift(Typ)10 uV/C
Operating Temperature Range-40 to 85 C
Output Current(Typ)190 mA
Package GroupSOIC
Package Size: mm2:W x L8SOIC: 29 mm2: 6 x 4.9(SOIC) PKG
Rail-to-RailNo
RatingCatalog
Slew Rate(Typ)1800 V/us
Total Supply Voltage(Max)12 +5V=5, +/-5V=10
Total Supply Voltage(Min)5 +5V=5, +/-5V=10
Vn at 1kHz(Typ)5.5 nV/rtHz
Vn at Flatband(Typ)5.5 nV/rtHz
Vos (Offset Voltage @ 25C)(Max)4 mV

Eco Plan

RoHSCompliant

Design Kits & Evaluation Modules

  • Evaluation Modules & Boards: DEM-OPA-SOT-1A
    Unpopulated PCB Compatible w/High Speed, Wide Bandwidth Op Amps in SOT(DBV) Pkg
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: DEM-OPA-SO-1A
    DEM-OPA-SO-1A Unpopulated PCB Compatible w/High Speed Wide Bandwidth Op Amps in 8-lead SOIC (D) Pkg
    Lifecycle Status: Active (Recommended for new designs)

Application Notes

  • A Numerical Solution to an Analog Problem
    PDF, 210 Kb, File published: Apr 25, 2010
    In order to derive a solution for an analog circuit problem, it is often useful to develop a model. This approach is generally accepted as developing an analytical model. However, finding the analytical solution is not always practical or possible as a result of higher-degree polynomials that require further resolution, or because of the time needed to develop the solution completely. In these sit
  • RLC Filter Design for ADC Interface Applications (Rev. A)
    PDF, 299 Kb, Revision: A, File published: May 13, 2015
    As high performance Analog-to-Digital Converters (ADCs) continue to improve in their performance, the last stage interface from the final amplifier into the converter inputs becomes a critical element in the system design if the full converter dynamic range is desired. This application note describes the performance and design equations for a simple passive 2nd-order filter used successfully in AD
  • ADS5500, OPA695: PC Board Layout for Low Distortion High-Speed ADC Drivers
    PDF, 273 Kb, File published: Apr 22, 2004
    Once an analog-to-digital converter (ADC) and a driver/interface have been selected for a given application, the next step to achieving excellent performance is laying out the printed circuit board (PCB) that will support the application. This application report describes several techniques for optimizing a high-speed, 14-bit performance, differential driver PCB layout using a wideband operation
  • Measuring Board Parasitics in High-Speed Analog Design
    PDF, 134 Kb, File published: Jul 7, 2003
    Successful circuit designs using high-speed amplifiers can depend upon understanding and identifying parasitic PCB components. Simulating a design while including PCB parasitics can protect against unpleasant production surprises. This application report discusses an easy method for measuring parasitic components in a prototype or final PC board design by using a standard oscilloscope and low freq
  • Noise Analysis for High Speed Op Amps (Rev. A)
    PDF, 256 Kb, Revision: A, File published: Jan 17, 2005
    As system bandwidths have increased an accurate estimate of the noise contribution for each element in the signal channel has become increasingly important. Many designers are not however particularly comfortable with the calculations required to predict the total noise for an op amp or in the conversions between the different descriptions of noise. Considerable inconsistency between manufactu

Model Line

Manufacturer's Classification

  • Semiconductors > Amplifiers > Operational Amplifiers (Op Amps) > High-Speed Op Amps (>=50MHz)