Datasheet Texas Instruments TPS61291DRVR
Manufacturer | Texas Instruments |
Series | TPS61291 |
Part Number | TPS61291DRVR |
Low Iq Boost Converter with Bypass Operation 6-WSON -40 to 85
Datasheets
TPS61291 Low Iq Boost Converter with Bypass Operation datasheet
PDF, 1.7 Mb, Revision: A, File published: Sep 23, 2014
Extract from the document
Prices
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
Packaging
Pin | 6 |
Package Type | DRV |
Industry STD Term | WSON |
JEDEC Code | S-PDSO-N |
Package QTY | 3000 |
Carrier | LARGE T&R |
Device Marking | PC4I |
Width (mm) | 2 |
Length (mm) | 2 |
Thickness (mm) | .75 |
Pitch (mm) | .65 |
Max Height (mm) | .8 |
Mechanical Data | Download |
Parametrics
Duty Cycle(Max) | 90 % |
Iq(Typ) | 0.005 mA |
Operating Temperature Range | -40 to 85 C |
Package Group | WSON |
Rating | Catalog |
Regulated Outputs | 1 |
Special Features | Enable,Light Load Efficiency,Synchronous Rectification |
Switch Current Limit(Typ) | 1 A |
Type | Converter |
Vin(Max) | 5 V |
Vin(Min) | 0.9 V |
Vout(Max) | 3.3 V |
Vout(Min) | 2.5 V |
Eco Plan
RoHS | Compliant |
Design Kits & Evaluation Modules
- Evaluation Modules & Boards: TPS61291EVM-569
Low IQ Boost Converter with Bypass Mode Evaluation Module
Lifecycle Status: Active (Recommended for new designs)
Application Notes
- Calculating and Measuring the No Load Input Current of the Boost ConverterPDF, 143 Kb, File published: Sep 23, 2016
- Accurately measuring efficiency of ultralow-IQ devicesPDF, 254 Kb, File published: Jan 22, 2014
- Minimizing Ringing at the Switch Node of a Boost ConverterPDF, 201 Kb, File published: Sep 15, 2006
The application report explains how to use proper board layout and/or a snubber to reduce high-frequency ringing at the switch node of a boost converter. - Basic Calculation of a Boost Converter's Power Stage (Rev. C)PDF, 186 Kb, Revision: C, File published: Jan 8, 2014
This application note gives the equations to calculate the power stage of a boost converter built with an IC with integrated switch and operating in continuous conduction mode. It is not intended to give details on the functionality of a boost converter (see Reference 1) or how to compensate a converter. See the references at the end of this document if more detail is needed. - Extending the Soft Start Time Without a Soft Start Pin (Rev. B)PDF, 387 Kb, Revision: B, File published: Jun 15, 2017
- QFN and SON PCB Attachment (Rev. B)PDF, 821 Kb, Revision: B, File published: Aug 24, 2018
- IQ: What it is what it isn’t and how to use itPDF, 198 Kb, File published: Jun 17, 2011
- Performing Accurate PFM Mode Efficiency Measurements (Rev. A)PDF, 418 Kb, Revision: A, File published: Dec 11, 2018
When performing measurements on DC-DC converters using pulse frequency modulation(PFM)or any power save mode proper care must be taken to ensure that the measurements are accurate. An accurate PFM mode efficiency measurement is critical for systems which require high efficiency at low loads such as in smart home systems tablets wearables and metering.
Model Line
Series: TPS61291 (2)
- TPS61291DRVR TPS61291DRVT
Manufacturer's Classification
- Semiconductors > Power Management > Non-isolated DC/DC Switching Regulator > Step-Up (Boost) > Boost Converter (Integrated Switch)