Datasheet Texas Instruments ADS8411IBPFBT

ManufacturerTexas Instruments
SeriesADS8411
Part NumberADS8411IBPFBT
Datasheet Texas Instruments ADS8411IBPFBT

16-Bit, 2MSPS ADC with P8/P16 Parallel Output, Internal Clock & Internal Reference 48-TQFP -40 to 85

Datasheets

16-Bit, 2 MSPS, Unipolar Input, Micropower Sampling Analog to Digital Converter datasheet
PDF, 1.5 Mb, Revision: B, File published: Dec 17, 2004
Extract from the document

Prices

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityNo

Packaging

Pin4848
Package TypePFBPFB
Industry STD TermTQFPTQFP
JEDEC CodeS-PQFP-GS-PQFP-G
Package QTY250250
CarrierSMALL T&RSMALL T&R
Device MarkingADS8411IB
Width (mm)77
Length (mm)77
Thickness (mm)11
Pitch (mm).5.5
Max Height (mm)1.21.2
Mechanical DataDownloadDownload

Parametrics

# Input Channels1
Analog Voltage AVDD(Max)5.25 V
Analog Voltage AVDD(Min)4.75 V
ArchitectureSAR
Digital Supply(Max)5.25 V
Digital Supply(Min)2.7 V
INL(Max)2.5 +/-LSB
Input Range(Max)4.1 V
Input TypePseudo-Differential,Single-Ended
Integrated FeaturesOscillator
InterfaceParallel
Multi-Channel ConfigurationN/A
Operating Temperature Range-40 to 85 C
Package GroupTQFP
Package Size: mm2:W x L48TQFP: 81 mm2: 9 x 9(TQFP) PKG
Power Consumption(Typ)155 mW
RatingCatalog
Reference ModeExt,Int
Resolution16 Bits
SINAD85 dB
SNR86 dB
Sample Rate (max)2MSPS SPS
Sample Rate(Max)2 MSPS
THD(Typ)-90 dB

Eco Plan

RoHSCompliant

Application Notes

  • Using ADS8411/2 (16-Bit 2MSPS SAR) as a Serial ADC
    PDF, 438 Kb, File published: May 24, 2004
    This application report discusses how to use a parallel ADC as a serial ADC by using a low-cost CPLD. This concept is tested with a Texas Instruments ADS8411/12 (16-bit, 2 MSPS SAR ADC) and an Altera(TM) MAX 3000A CPLD. A full solution with a schematic, layout, and software for programming the CPLD is presented at the end of the report.
  • Interfacing the ADS8401/ADS8411 to TMS320C6713 DSP
    PDF, 260 Kb, File published: Sep 23, 2004
    This application report presents a solution for interfacing the ADS8401 and ADS8411 16-bit, parallel interface converters to the TMS320C6713 DSP. The hardware solution consists of existing hardware, specifically the ADS8411EVM, 'C6713 DSK, and 5-6K interface board. The software demonstrates how to use an EDMA ping-pong buffer and Timer1 peripherals to collect data at 2 MSPS. Discussed also are som
  • Accurately measuring ADC driving-circuit settling time (Rev. A)
    PDF, 107 Kb, Revision: A, File published: May 18, 2015
  • Using ADS8411 in a Multiplexed Analog Input Application (Rev. A)
    PDF, 2.1 Mb, Revision: A, File published: Feb 15, 2006
    This application report is intended as a guide for using an analog multiplexer to multiplex several input signals to a single high-resolution, high-speed SAR analog-to-digital converter (ADC). The ADC and the multiplexer used were the ADS8411 and the TS5A3159/3359, respectively. This document discusses the important parameters of a multiplexer and defines a few important measurements for evaluatin
  • Determining Minimum Acquisition Times for SAR ADCs, part 1 (Rev. A)
    PDF, 227 Kb, Revision: A, File published: Nov 10, 2010
    This application report analyzes a simple method for calculating minimum acquisition times for successive-approximation register analog-to-digital converters (SAR ADCs). The input structure of the ADC is examined along with the driving circuit. The voltage on the sampling capacitor is then determined for the case when a step function is applied to the input of the driving circuit. Three different
  • Determining Minimum Acquisition Times for SAR ADCs, part 2
    PDF, 215 Kb, File published: Mar 17, 2011
    The input structure circuit of a successive-approximation register analog-to-digital converter (SAR ADC) incombination with the driving circuit forms a transfer function that can be used to determine minimum acquisition times for different types of applied input signals. This application report, which builds on Determining Minimum Acquisition Times for SAR ADCs When a Step Function is Applied to

Model Line

Series: ADS8411 (3)

Manufacturer's Classification

  • Semiconductors > Data Converters > Analog-to-Digital Converters (ADCs) > Precision ADCs (<=10MSPS)