Datasheet Texas Instruments TPS61107PW
Manufacturer | Texas Instruments |
Series | TPS61107 |
Part Number | TPS61107PW |
Dual Output Converter (Boost DC/DC + LDO) for Single/Dual-Cell Applications 20-TSSOP -40 to 85
Datasheets
TPS6110x - Dual-Output, Single-Cell Boost Converters datasheet
PDF, 1.1 Mb, Revision: B, File published: Apr 15, 2004
Extract from the document
Prices
Status
Lifecycle Status | NRND (Not recommended for new designs) |
Manufacture's Sample Availability | No |
Packaging
Pin | 20 |
Package Type | PW |
Industry STD Term | TSSOP |
JEDEC Code | R-PDSO-G |
Package QTY | 70 |
Carrier | TUBE |
Device Marking | TPS61107 |
Width (mm) | 4.4 |
Length (mm) | 6.5 |
Thickness (mm) | 1 |
Pitch (mm) | .65 |
Max Height (mm) | 1.2 |
Mechanical Data | Download |
Eco Plan
RoHS | Compliant |
Design Kits & Evaluation Modules
- Evaluation Modules & Boards: TPS61100EVM-216
TPS61100 Evaluation Module
Lifecycle Status: Obsolete (Manufacturer has discontinued the production of the device) - Evaluation Modules & Boards: TPS61107EVM-216
TPS61107 Evaluation Module
Lifecycle Status: Obsolete (Manufacturer has discontinued the production of the device) - Evaluation Modules & Boards: TPS61103EVM-216
TPS61103 Evaluation Module
Lifecycle Status: Obsolete (Manufacturer has discontinued the production of the device) - Evaluation Modules & Boards: TPS61106EVM-216
TPS61106 Evaluation Module
Lifecycle Status: Obsolete (Manufacturer has discontinued the production of the device)
Application Notes
- Minimizing Ringing at the Switch Node of a Boost ConverterPDF, 201 Kb, File published: Sep 15, 2006
The application report explains how to use proper board layout and/or a snubber to reduce high-frequency ringing at the switch node of a boost converter. - Basic Calculation of a Boost Converter's Power Stage (Rev. C)PDF, 186 Kb, Revision: C, File published: Jan 8, 2014
This application note gives the equations to calculate the power stage of a boost converter built with an IC with integrated switch and operating in continuous conduction mode. It is not intended to give details on the functionality of a boost converter (see Reference 1) or how to compensate a converter. See the references at the end of this document if more detail is needed. - Optimizing Transient Response of Internally Compensated DC-DC Converters (Rev. A)PDF, 1.1 Mb, Revision: A, File published: May 11, 2015
- Extending the Soft Start Time Without a Soft Start Pin (Rev. B)PDF, 387 Kb, Revision: B, File published: Jun 15, 2017
- Choosing an Appropriate Pull-up/Pull-down Resistor for Open Drain OutputsPDF, 130 Kb, File published: Sep 19, 2011
- QFN and SON PCB Attachment (Rev. B)PDF, 821 Kb, Revision: B, File published: Aug 24, 2018
- IQ: What it is what it isn’t and how to use itPDF, 198 Kb, File published: Jun 17, 2011
- Performing Accurate PFM Mode Efficiency Measurements (Rev. A)PDF, 418 Kb, Revision: A, File published: Dec 11, 2018
When performing measurements on DC-DC converters using pulse frequency modulation(PFM)or any power save mode proper care must be taken to ensure that the measurements are accurate. An accurate PFM mode efficiency measurement is critical for systems which require high efficiency at low loads such as in smart home systems tablets wearables and metering. - LDO PSRR Measurement Simplified (Rev. A)PDF, 131 Kb, Revision: A, File published: Aug 9, 2017
This applicationreportexplainsdifferentmethodsof measuringthe PowerSupplyRejectionRatio(PSRR)of a Low-Dropout(LDO)regulatorand includesthe prosand consof thesemeasuringmethods - LDO Noise Demystified (Rev. A)PDF, 785 Kb, Revision: A, File published: Aug 9, 2017
Thisapplicationreportexplainsthe differencebetweennoiseand PSRRof an LDO.It also explainsthedifferentwaysnoiseis specifiedin LDOdatasheetsandwhichspecificationshouldbe usedin theapplication.Finallyit explainshow LDOnoiseis reduced.
Model Line
Series: TPS61107 (4)
- TPS61107PW TPS61107PWG4 TPS61107PWR TPS61107RGER
Manufacturer's Classification
- Semiconductors > Power Management > Non-isolated DC/DC Switching Regulator > Step-Up (Boost) > Boost Converter (Integrated Switch)