Datasheet Texas Instruments SN74ALVC16269

ManufacturerTexas Instruments
SeriesSN74ALVC16269

12-Bit To 24-Bit Registered Bus Transceiver With 3-State Outputs SN74ALVC16269

Datasheets

12-Bit To 24-Bit Registered Bus Transceiver With 3-State Outputs (Rev. B)
PDF, 158 Kb, Revision: B, File published: Aug 1, 1995

Prices

Status

SN74ALVC16269DLSN74ALVC16269DLR
Lifecycle StatusObsolete (Manufacturer has discontinued the production of the device)Obsolete (Manufacturer has discontinued the production of the device)
Manufacture's Sample AvailabilityNoNo

Packaging

SN74ALVC16269DLSN74ALVC16269DLR
N12
Pin5656
Package TypeDLDL
Industry STD TermSSOPSSOP
JEDEC CodeR-PDSO-GR-PDSO-G
Width (mm)7.497.49
Length (mm)18.4118.41
Thickness (mm)2.592.59
Pitch (mm).635.635
Max Height (mm)2.792.79
Mechanical DataDownloadDownload

Eco Plan

SN74ALVC16269DLSN74ALVC16269DLR
RoHSNot CompliantNot Compliant
Pb FreeNoNo

Application Notes

  • TI SN74ALVC16835 Component Specification Analysis for PC100
    PDF, 43 Kb, File published: Aug 3, 1998
    The PC100 standard establishes design parameters for the PC SDRAM DIMM that is designed to operate at 100 MHz. The 168-pin, 8-byte, registered SDRAM DIMM is a JEDEC-defined device (JC-42.5-96-146A). Some of the defined signal paths include data signals, address signals, and control signals. This application report discusses the SN74ALVC16835 18-bit universal bus driver that is available from T
  • Logic Solutions for PC-100 SDRAM Registered DIMMs (Rev. A)
    PDF, 96 Kb, Revision: A, File published: May 13, 1998
    Design of high-performance personal computer (PC) systems that are capable of meeting the needs imposed by modern operating systems and software includes the use of large banks of SDRAMs on DIMMs (see Figure 1).To meet the demands of stable functionality over the broad spectrum of operating environments, meet system timing needs, and to support data integrity, the loads presented by the large
  • 16-Bit Widebus Logic Families in 56-Ball 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B)
    PDF, 895 Kb, Revision: B, File published: May 22, 2002
    TI?s 56-ball MicroStar Jr.E package registered under JEDEC MO-225 has demonstrated through modeling and experimentation that it is an optimal solution for reducing inductance and capacitance improving thermal performance and minimizing board area usage in integrated bus functions. Multiple functions released in the 56-ball MicroStar Jr.E package have superior performance characteristics compa
  • Understanding Advanced Bus-Interface Products Design Guide
    PDF, 253 Kb, File published: May 1, 1996
  • Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A)
    PDF, 154 Kb, Revision: A, File published: Sep 8, 1999
    In the last few years the trend toward reducing supply voltage (VCC) has continued as reflected in an additional specification of 2.5-V VCC for the AVC ALVT ALVC LVC LV and the CBTLV families.In this application report the different logic levels at VCC of 5 V 3.3 V 2.5 V and 1.8 V are compared. Within the report the possibilities for migration from 5-V logic and 3.3-V logic families

Model Line

Series: SN74ALVC16269 (2)

Manufacturer's Classification

  • Semiconductors> Logic> Universal Bus Function> Universal Bus Exchanger (UBE)