Datasheet MCP6H71, MCP6H72, MCP6H74 (Microchip) - 8

ManufacturerMicrochip
DescriptionMicrochip’s MCP6H71/2/4 family of operational amplifiers (op amps) has a wide supply voltage range of 3.5V to 12V and rail-to-rail output operation
Pages / Page44 / 8 — MCP6H71/2/4. Note:. 200. 120. 100. Representative Part. 110. PSRR+. CMRR. …
File Format / SizePDF / 1.8 Mb
Document LanguageEnglish

MCP6H71/2/4. Note:. 200. 120. 100. Representative Part. 110. PSRR+. CMRR. -100. (dB). ltage (uV) o. -200. PSRR-. ffset V. -300. T = +125°. 125 C. RR, PSRR

MCP6H71/2/4 Note: 200 120 100 Representative Part 110 PSRR+ CMRR -100 (dB) ltage (uV) o -200 PSRR- ffset V -300 T = +125° 125 C RR, PSRR

Model Line for this Datasheet

Text Version of Document

MCP6H71/2/4 Note:
Unless otherwise indicated, T  A = +25°C, VDD = +3.5V to +12V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 60 pF.
200 120 100 Representative Part 110 PSRR+ Representative Part 0 100 CMRR 90 -100 (dB) ltage (uV) o 80 -200 70 PSRR- ffset V -300 60 O T = +125° 125 C O A RR, PSRR T = +85°C 50 -400 A M T = +25°C C A Input 40 T = -40°C -500 A 30 -600 20 0 2 4 6 8 10 12 10 100 10 100 1000 1k 10000 10k 100000 1000000 100k 1M Power Supply Voltage (V) Frequency (Hz) FIGURE 2-7:
Input Offset Voltage vs.
FIGURE 2-10:
CMRR, PSRR vs. Power Supply Voltage. Frequency.
1,000 130 120 PSRR 110 100 (dB) 100 ltage Density Hz) o ¥ 90 (nV/ 10 80 CMRR @ V = 12V DD oise V @ V = 5V N MRR, PSRR DD C 70 @ V = 3 5 . V 5V DD 60 Input 1 50 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1 10 100 1k 10k 100k 1M -50 -25 0 25 50 75 100 125 Frequency (Hz) Ambient Temperature (°C) FIGURE 2-8:
Input Noise Voltage Density
FIGURE 2-11:
CMRR, PSRR vs. Ambient vs. Frequency. Temperature.
20 10000 10n V = 12 V DD 18 1000 1n Currents 16 Input Bias Current 100 100p ltage Density Hz) o ¥ 14 (A) (nV/ 10 10p 12 oise V N f = 10 kHz as and Offset V = 12 V 1 10 DD 1p Input Offset Current Input 8 Input Bi 0.1 0.1p 5 -1 1 3 5 7 9 11 25 35 45 55 65 75 85 95 105 11 125 Common Mode Input Voltage (V) Ambient Temperature (°C) FIGURE 2-9:
Input Noise Voltage Density
FIGURE 2-12:
Input Bias, Offset Currents vs. Common Mode Input Voltage. vs. Ambient Temperature. DS20002325C-page 8  2012-2014 Microchip Technology Inc. Document Outline Features Applications Design Aids Description Package Types 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Test Circuits FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-4: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-5: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-6: Input Offset Voltage vs. Output Voltage. FIGURE 2-7: Input Offset Voltage vs. Power Supply Voltage. FIGURE 2-8: Input Noise Voltage Density vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Common Mode Input Voltage. FIGURE 2-10: CMRR, PSRR vs. Frequency. FIGURE 2-11: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-12: Input Bias, Offset Currents vs. Ambient Temperature. FIGURE 2-13: Input Bias Current vs. Common Mode Input Voltage. FIGURE 2-14: Quiescent Current vs. Ambient Temperature. FIGURE 2-15: Quiescent Current vs. Power Supply Voltage. FIGURE 2-16: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-17: DC Open-Loop Gain vs. Power Supply Voltage. FIGURE 2-18: DC Open-Loop Gain vs. Output Voltage Headroom. FIGURE 2-19: Channel-to-Channel Separation vs. Frequency (MCP6H72/4 only). FIGURE 2-20: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-22: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-23: Output Voltage Swing vs. Frequency. FIGURE 2-24: Output Voltage Headroom vs. Output Current. FIGURE 2-25: Output Voltage Headroom vs. Output Current. FIGURE 2-26: Output Voltage Headroom vs. Output Current. FIGURE 2-27: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-28: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-29: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-30: Slew Rate vs. Ambient Temperature. FIGURE 2-31: Slew Rate vs. Ambient Temperature. FIGURE 2-32: Small Signal Non-Inverting Pulse Response. FIGURE 2-33: Small Signal Inverting Pulse Response. FIGURE 2-34: Large Signal Non-Inverting Pulse Response. FIGURE 2-35: Large Signal Inverting Pulse Response. FIGURE 2-36: The MCP6H71/2/4 Shows No Phase Reversal. FIGURE 2-37: Closed-Loop Output Impedance vs. Frequency. FIGURE 2-38: Measured Input Current vs. Input Voltage (below VSS). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 3.4 Exposed Thermal Pad (EP) 4.0 Application Information 4.1 Inputs FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. FIGURE 4-3: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-4: Output Resistor, RISO Stabilizes Large Capacitive Loads. FIGURE 4-5: Recommended RISO Values for Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-6: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-7: Example Guard Ring Layout for Inverting Gain. 4.7 Application Circuits FIGURE 4-8: High-Side Current Sensing Using Difference Amplifier. FIGURE 4-9: Active Full-Wave Rectifier. FIGURE 4-10: Triangle Waves Generator. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 MAPS (Microchip Advanced Part Selector) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Trademarks Worldwide Sales and Service