Datasheet MCP6L91, MCP6L91R, MCP6L92, MCP6L94 (Microchip) - 4

ManufacturerMicrochip
DescriptionThe MCP6L91/1R/2/4 family of operational amplifiers has a 10 MHz Gain Bandwidth Product and a low 850uA per amplifier quiescent current
Pages / Page36 / 4 — MCP6L91/1R/2/4. TABLE 1-2:. AC ELECTRICAL SPECIFICATIONS. Electrical …
File Format / SizePDF / 1.0 Mb
Document LanguageEnglish

MCP6L91/1R/2/4. TABLE 1-2:. AC ELECTRICAL SPECIFICATIONS. Electrical Characteristics:. Parameters. Sym. Min. Typ. Max. Units. Conditions

MCP6L91/1R/2/4 TABLE 1-2: AC ELECTRICAL SPECIFICATIONS Electrical Characteristics: Parameters Sym Min Typ Max Units Conditions

Model Line for this Datasheet

Text Version of Document

link to page 4 link to page 4 link to page 4 link to page 4
MCP6L91/1R/2/4 TABLE 1-2: AC ELECTRICAL SPECIFICATIONS Electrical Characteristics:
Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT  VDD/2, VL = VDD/2, RL = 10 k to VL and CL = 60 pF (refer to Figure 1-1).
Parameters Sym Min Typ Max Units Conditions AC Response
Gain Bandwidth Product GBWP — 10 — MHz Phase Margin PM — 65 — ° G = +1 Slew Rate SR — 7 — V/µs
Noise
Input Noise Voltage Eni — 2.5 — µVP-P f = 0.1 Hz to 10 Hz Input Noise Voltage Density eni — 9.4 — nV/Hz f = 10 kHz Input Noise Current Density ini — 3 — fA/Hz f = 1 kHz
TABLE 1-3: TEMPERATURE SPECIFICATIONS Electrical Characteristics:
Unless otherwise indicated, all limits are specified for: VDD = +2.4V to +6.0V, VSS = GND.
Parameters Sym Min Typ Max Units Conditions Temperature Ranges
Specified Temperature Range TA -40 — +125 °C Operating Temperature Range TA -40 — +125 °C
(Note 1 )
Storage Temperature Range TA -65 — +150 °C
Thermal Package Resistances
Thermal Resistance, 5L-SOT-23 JA — 256 — °C/W Thermal Resistance, 8L-SOIC (150 mil) JA — 163 — °C/W Thermal Resistance, 8L-MSOP JA — 206 — °C/W Thermal Resistance, 14L-SOIC JA — 120 — °C/W Thermal Resistance, 14L-TSSOP JA — 100 — °C/W
Note 1:
Operation must not cause TJ to exceed Maximum Junction Temperature specification (150°C).
1.3 Test Circuit
CF 6.8 pF The circuit used for most DC and AC tests is shown in Figure 1-1. This circuit can independently set VCM and V RG R OUT; see Equation 1-1. Note that VCM is not the F circuit’s common mode voltage ((V 100 k 100 k P + VM)/2), and that V V V P DD/2 OST includes VOS plus the effects (on the input offset V error, V DD OST) of temperature, CMRR, PSRR and AOL. VIN+
EQUATION 1-1:
C C B1 B2
MCP6L9X
100 nF 1 µF G =  DM RF RG V =  +    V CM VP VDD 2 2 IN– VOST = VIN– – VIN+ V V M OUT V =    +   +   R R C OUT VDD 2 VP – VM VOST 1 + GDM G RF L L Where: 100 k 100 k 10 k 60 pF GDM = Differential Mode Gain (V/V) C V F CM = Op Amp’s Common Mode (V) V 6.8 pF L Input Voltage V (mV)
FIGURE 1-1:
AC and DC Test Circuit for OST = Op Amp’s Total Input Offset Voltage Most Specifications. DS22141B-page 4  2009-2011 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC Electrical Specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Test Circuit FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 2.4V. FIGURE 2-2: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V. FIGURE 2-3: Input Offset Voltage vs. Output Voltage. FIGURE 2-4: Input Common Mode Range Voltage vs. Ambient Temperature. FIGURE 2-5: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-6: CMRR, PSRR vs. Frequency. FIGURE 2-7: Measured Input Current vs. Input Voltage (below VSS). FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: The MCP6L91/1R/2/4 Show No Phase Reversal. FIGURE 2-11: Quiescent Current vs. Power Supply Voltage. FIGURE 2-12: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-13: Ratio of Output Voltage Headroom to Output Current vs. Output Current. FIGURE 2-14: Small Signal, Noninverting Pulse Response. FIGURE 2-15: Large Signal, Noninverting Pulse Response. FIGURE 2-16: Slew Rate vs. Ambient Temperature. FIGURE 2-17: Output Voltage Swing vs. Frequency. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 4.0 Application Information 4.1 Rail-to-Rail Inputs FIGURE 4-1: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-2: Output Resistor, RISO stabilizes large capacitive loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-3: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-4: Example Guard Ring Layout. 4.7 Application Circuit FIGURE 4-5: Chebyshev Filter. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product ID System Trademarks Worldwide Sales