Datasheet MCP6051, MCP6052, MCP6054 (Microchip) - 9 Manufacturer Microchip Description The Microchip Technology MCP6051/2/4 family of operational amplifiers (op amps) has low input offset voltage (±150 µV, maximum) and rail-to-rail input and output operation Pages / Page 40 / 9 — MCP6051/2/4. Note:. 0.35. 0.30. 0.25. VDD = 6.0V. 0.20. VCM = 0.9VDD. t … File Format / Size PDF / 1.3 Mb Document Language English
MCP6051/2/4. Note:. 0.35. 0.30. 0.25. VDD = 6.0V. 0.20. VCM = 0.9VDD. t V. 0.15. VCMR_H - VDD @ VDD = 6.0V. r) 35. 0.10. rren. it (V). @ VDD = 3.0V
Download PDF
Model Line for this Datasheet Text Version of Document MCP6051/2/4 Note: Unless otherwise indicated, T ≈ A = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.0.35 45 e 0.30 ag 0.25 lt 40 VDD = 6.0V o 0.20 t VCM = 0.9VDD t V 0.15 VCMR_H - VDD @ VDD = 6.0V r) 35 0.10 pu rren it (V) @ VDD = 3.0V ie 0.05 In im @ V lif DD = 1.8V 30 p 0.00 t Cu de m o e L -0.05 V en g CMR_L - VSS @ VDD = 1.8V 25 /A M -0.10 VOL - VSS @ VDD = 3.0V A V n iesc DD = 1.8V Ran -0.15 V o OL - VSS @ VDD = 6.0V u (µ 20 VCM = 0.9VDD m -0.20 Q m -0.25 15 o -0.30 C -0.35 10 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) Ambient Temperature (°C) FIGURE 2-13: Common Mode InputFIGURE 2-16: Quiescent Current vs Voltage Range Limit vs. Ambient Temperature. Ambient Temperature with VCM = 0.9VDD.10000 45 V ) VDD = 6.0V DD = 6.0V 40 et V V A CM = 0.9VDD CM = VDD u 35 ffs ) 1000 t ( A en 30 nd O rr u 25 a ts (p Input Bias Current 100 s t C 20 ia rren TA = +125°C B u 15 T C A = +85°C 10 iescen 10 T u A = +25°C Input Q T 5 A = -40°C Input Offset Current 1 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 25 45 65 85 105 125 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. 6. 7. Ambient Temperature (°C) Power Supply Voltage (V) FIGURE 2-14: Input Bias, Offset CurrentsFIGURE 2-17: Quiescent Current vs. vs. Ambient Temperature. Power Supply Voltage with VCM = 0.9VDD.10000 120 0 ) VDD = 6.0V Open-Loop Gain A ) 100 -30 B °) ( t (p 1000 n (d 80 -60 T ase Open-Loop Phase rre A = +125°C ain h u 60 -90 P 100 C p G p s o o o 40 -120 ia B -L 10 TA = +85°C en 20 -150 en-Lo p p O Input O 0 -180 VDD = 6.0V 1 -20 -210 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 0.1 1 10 100 1k 10k 100k 1M 10M Common Mode Input Votlage (V) Frequency (Hz) FIGURE 2-15: Input Bias Current vs.FIGURE 2-18: Open-Loop Gain, Phase vs. Common Mode Input Voltage. Frequency. © 2010 Microchip Technology Inc. DS22182B-page 9 Document Outline MCP6051/2/4 Applications Design Aids Typical Application Description Package Types 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC electrical specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: temperature specifications 1.3 Test Circuits EQUATION 1-1: FIGURE 1-1: AC and DC Test Circuit for Most Specifications. Notes: 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage with VDD = 3.0V. FIGURE 2-2: Input Offset Voltage Drift with VDD = 3.0V and TA £ +85°C. FIGURE 2-3: Input Offset Voltage Drift with VDD = 3.0V and TA ³ +85°C. FIGURE 2-4: Input Offset Voltage vs. Common Mode Input Voltage with VDD = 6.0V. FIGURE 2-5: Input Offset Voltage vs. Common Mode Input Voltage with VDD = 3.0V. FIGURE 2-6: Input Offset Voltage vs. Common Mode Input Voltage with VDD = 1.8V. FIGURE 2-7: Input Offset Voltage vs. Output Voltage. FIGURE 2-8: Input Offset Voltage vs. Power Supply Voltage. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: Input Noise Voltage Density vs. Common Mode Input Voltage. FIGURE 2-11: CMRR, PSRR vs. Frequency. FIGURE 2-12: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-13: Common Mode Input Voltage Range Limit vs. Ambient Temperature. FIGURE 2-14: Input Bias, Offset Currents vs. Ambient Temperature. FIGURE 2-15: Input Bias Current vs. Common Mode Input Voltage. FIGURE 2-16: Quiescent Current vs Ambient Temperature with VCM = 0.9VDD. FIGURE 2-17: Quiescent Current vs. Power Supply Voltage with VCM = 0.9VDD. FIGURE 2-18: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-19: DC Open-Loop Gain vs. Power Supply Voltage. FIGURE 2-20: DC Open-Loop Gain vs. Output Voltage Headroom. FIGURE 2-21: Channel-to-Channel Separation vs. Frequency (MCP6052/4 only). FIGURE 2-22: Gain Bandwidth Product, Phase Margin vs. Common Mode Input Voltage. FIGURE 2-23: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-24: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-25: Ouput Short Circuit Current vs. Power Supply Voltage. FIGURE 2-26: Output Voltage Swing vs. Frequency. FIGURE 2-27: Ratio of Output Voltage Headroom to Output Current vs. Output Current. FIGURE 2-28: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-29: Slew Rate vs. Ambient Temperature. FIGURE 2-30: Small Signal Non-Inverting Pulse Response. FIGURE 2-31: Small Signal Inverting Pulse Response. FIGURE 2-32: Large Signal Non-Inverting Pulse Response. FIGURE 2-33: Large Signal Inverting Pulse Response. FIGURE 2-34: The MCP6051/2/4 Shows No Phase Reversal. FIGURE 2-35: Closed Loop Output Impedance vs. Frequency. FIGURE 2-36: Measured Input Current vs. Input Voltage (below VSS). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 3.4 Exposed Thermal Pad (EP) Notes: 4.0 Application Information 4.1 Rail-to-Rail Input 4.1.1 Phase Reversal 4.1.2 Input Voltage Limits FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. 4.1.3 Input Current Limits FIGURE 4-3: Protecting the Analog Inputs. 4.1.4 Normal Operation 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-4: Output Resistor, RISO Stabilizes Large Capacitive Loads. FIGURE 4-5: Recommended RISO Values for Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-6: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-7: Example Guard Ring Layout for Inverting Gain. 1. Non-inverting Gain and Unity-Gain Buffer: a) Connect the non-inverting pin (VIN+) to the input with a wire that does not touch the PCB surface. b) Connect the guard ring to the inverting input pin (VIN–). This biases the guard ring to the common mode input voltage. 2. Inverting Gain and Transimpedance Gain Amplifiers (convert current to voltage, such as photo detectors): a) Connect the guard ring to the non-inverting input pin (VIN+). This biases the guard ring to the same reference voltage as the op amp (e.g., VDD/2 or ground). b) Connect the inverting pin (VIN–) to the input with a wire that does not touch the PCB surface. 4.7 Application Circuits 4.7.1 Gyrator FIGURE 4-8: Gyrator. 4.7.2 Instrumentation Amplifier FIGURE 4-9: Two Op Amp Instrumentation Amplifier. 4.7.3 Precision Comparator FIGURE 4-10: Precision, Non-inverting Comparator. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes Notes: 6.0 Packaging Information Features 6.1 Package Marking Information 30 µA, High Precision Op Amps Appendix A: Revision History Revision B (December 2010) 1. Added new SOT-23-5 package type for MCP6051 device. 2. Corrected Figures 2-13, 2-22, 2-23, 2-24 and 2-28 in Section 2.0 “Typical Performance Curves”. 3. Modified Table 3-1 to show the pin column for MCP6051, SOT-23-5 package. 4. Updated Section 4.1.2 “Input Voltage Limits”. 5. Added Section 4.1.3 “Input Current Limits”. 6. Added new document item in Section 5.5 “Application Notes”. 7. Updated the package markings information and drawings. 8. Updated the Product Identification System page. Revision A (May 2009) Notes: a) MCP6051T-E/OT: Tape and Reel, 5LD SOT-23 package b) MCP6051-E/SN: 8LD SOIC package c) MCP6051T-E/SN: Tape and Reel, 8LD SOIC package d) MCP6051T-E/MNY: Tape and Reel, 8LD 2x3 TDFN package a) MCP6052-E/SN: 8LD SOIC package b) MCP6052T-E/SN: Tape and Reel, 8LD SOIC package c) MCP6052T-E/MNY: Tape and Reel 8LD 2x3 TDFN package a) MCP6054-E/SL: 14LD SOIC package b) MCP6054T-E/SL: Tape and Reel, 14LD SOIC package c) MCP6054-E/ST: 14LD TSSOP package d) MCP6054T-E/ST: Tape and Reel, 14LD TSSOP package Notes: Worldwide Sales and Service Trademarks Worldwide Sales