Datasheet MCP4901, MCP4911, MCP4921 (Microchip) - 10

ManufacturerMicrochip
Description8/10/12-Bit Voltage Output Digital-to-Analog Converter with SPI Interface
Pages / Page50 / 10 — MCP4901/4911/4921. Note:. 2.5. 1.5. INL (LSB). 0.5. Absolute INL (LSB). …
Revision04-15-2010
File Format / SizePDF / 3.4 Mb
Document LanguageEnglish

MCP4901/4911/4921. Note:. 2.5. 1.5. INL (LSB). 0.5. Absolute INL (LSB). -40. -20. 100. 120. 1024. 2048. 3072. 4096. Ambient Temperature (ºC)

MCP4901/4911/4921 Note: 2.5 1.5 INL (LSB) 0.5 Absolute INL (LSB) -40 -20 100 120 1024 2048 3072 4096 Ambient Temperature (ºC)

Model Line for this Datasheet

Text Version of Document

link to page 10
MCP4901/4911/4921 Note:
Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2, RL = 5 k, CL = 100 pF.
2.5 2 2 0 1.5 -2 1 INL (LSB) -4 0.5 Absolute INL (LSB) 0 -6 -40 -20 0 20 40 60 80 100 120 0 1024 2048 3072 4096 Ambient Temperature (ºC) Code (Decimal) FIGURE 2-7:
Absolute INL vs.
FIGURE 2-10:
INL vs. Code (MCP4921). Temperature (MCP4921).
Note:
Single device graph (Figure 2-10) for illustration of 64 code effect.
3 0.2 2.5 Temp = - 40oC to +125oC 2 0.1 ) B 1.5 S L 0 ( L 1 DN Absolute INL (LSB) 0.5 -0.1 0 1 2 3 4 5 -0.2 0 128 256 384 512 640 768 896 1024 Voltage Reference (V) Code FIGURE 2-8:
Absolute INL vs. VREF
FIGURE 2-11:
DNL vs. Code and (MCP4921). Temperature (MCP4911).
3 VREF 1.5 2 1 2 3 4 5.5 1 0.5 85oC 0 ) B -0.5 S -1 (L INL (LSB) L -1.5 -2 IN 25oC -3 -2.5 - 40oC 125oC -4 0 1024 2048 3072 4096 -3.5 Code (Decimal) 0 128 256 384 512 640 768 896 1024 Code FIGURE 2-9:
INL vs. Code and VREF
FIGURE 2-12:
INL vs. Code and (MCP4921). Temperature (MCP4911). DS22248A-page 10  2010 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics FIGURE 1-1: SPI Input Timing Data. 2.0 Typical Performance Curves FIGURE 2-1: DNL vs. Code (MCP4921). FIGURE 2-2: DNL vs. Code and Temperature (MCP4921). FIGURE 2-3: DNL vs. Code and VREF, Gain=1 (MCP4921). FIGURE 2-4: Absolute DNL vs. Temperature (MCP4921). FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4921). FIGURE 2-6: INL vs. Code and Temperature (MCP4921). FIGURE 2-7: Absolute INL vs. Temperature (MCP4921). FIGURE 2-8: Absolute INL vs. VREF (MCP4921). FIGURE 2-9: INL vs. Code and VREF (MCP4921). FIGURE 2-10: INL vs. Code (MCP4921). FIGURE 2-11: DNL vs. Code and Temperature (MCP4911). FIGURE 2-12: INL vs. Code and Temperature (MCP4911). FIGURE 2-13: DNL vs. Code and Temperature (MCP4901). FIGURE 2-14: INL vs. Code and Temperature (MCP4901). FIGURE 2-15: IDD vs. Temperature and VDD. FIGURE 2-16: IDD Histogram (VDD = 2.7V). FIGURE 2-17: IDD Histogram (VDD = 5.0V). FIGURE 2-18: Shutdown Current vs. Temperature and VDD. FIGURE 2-19: Offset Error vs.Temperature and VDD. FIGURE 2-20: Gain Error vs. Temperature and VDD. FIGURE 2-21: VIN High Threshold vs. Temperature and VDD. FIGURE 2-22: VIN Low Threshold vs. Temperature and VDD. FIGURE 2-23: Input Hysteresis vs. Temperature and VDD. FIGURE 2-24: VREF Input Impedance vs. Temperature and VDD. FIGURE 2-25: VOUT High Limit vs. Temperature and VDD. FIGURE 2-26: VOUT Low Limit vs. Temperature and VDD. FIGURE 2-27: IOUT High Short vs. Temperature and VDD. FIGURE 2-28: IOUT vs. VOUT. Gain = 1. FIGURE 2-29: VOUT Rise Time FIGURE 2-30: VOUT Fall Time. FIGURE 2-31: VOUT Rise Time FIGURE 2-32: VOUT Rise Time FIGURE 2-33: VOUT Rise Time Exit Shutdown. FIGURE 2-34: PSRR vs. Frequency. FIGURE 2-35: Multiplier Mode Bandwidth. FIGURE 2-36: -3 db Bandwidth vs. Worst Codes. FIGURE 2-37: Phase Shift. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Supply Voltage Pins (VDD, VSS) 3.2 Chip Select (CS) 3.3 Serial Clock Input (SCK) 3.4 Serial Data Input (SDI) 3.5 Latch DAC Input (LDAC) 3.6 Analog Output (VOUT) 3.7 Voltage Reference Input (VREF) 3.8 Exposed Thermal Pad (EP) 4.0 General Overview TABLE 4-1: LSb of each device 4.1 DC Accuracy FIGURE 4-1: Example for INL Error. FIGURE 4-2: Example for DNL Accuracy. 4.2 Circuit Descriptions FIGURE 4-3: Typical Transient Response. FIGURE 4-4: Output Stage for Shutdown Mode. 5.0 Serial Interface 5.1 Overview 5.2 Write Command FIGURE 5-1: Write Command for MCP4921 (12-bit DAC). FIGURE 5-2: Write Command for MCP4911 (10-bit DAC). Note: X are don’t care bits. FIGURE 5-3: Write Command for MCP4901(8-bit DAC). Note: X are don’t care bits. 6.0 Typical Applications 6.1 Digital Interface 6.2 Power Supply Considerations FIGURE 6-1: Typical Connection Diagram. 6.3 Layout Considerations 6.4 Single-Supply Operation 6.5 Bipolar Operation 6.6 Selectable Gain and Offset Bipolar Voltage Output Using DAC Devices 6.7 Designing a Double-Precision DAC 6.8 Building Programmable Current Source 6.9 Using Multiplier Mode 7.0 Development support 7.1 Evaluation & Demonstration Boards 8.0 Packaging Information 8.1 Package Marking Information Corporate Office Atlanta Boston Chicago Cleveland Fax: 216-447-0643 Dallas Detroit Kokomo Toronto Fax: 852-2401-3431 Australia - Sydney China - Beijing China - Shanghai India - Bangalore Korea - Daegu Korea - Seoul Singapore Taiwan - Taipei Fax: 43-7242-2244-393 Denmark - Copenhagen France - Paris Germany - Munich Italy - Milan Spain - Madrid UK - Wokingham Worldwide Sales and Service