Datasheet LAN9354 (Microchip)

ManufacturerMicrochip
Description3-Port 10/100 Managed Ethernet Switch with Single RMII
Pages / Page487 / 1 — LAN9354. 3-Port 10/100 Managed Ethernet Switch with. Single RMII. …
File Format / SizePDF / 2.6 Mb
Document LanguageEnglish

LAN9354. 3-Port 10/100 Managed Ethernet Switch with. Single RMII. Highlights. Target Applications. Key Benefits

Datasheet LAN9354 Microchip

Model Line for this Datasheet

Text Version of Document

LAN9354 3-Port 10/100 Managed Ethernet Switch with Single RMII Highlights
• Ports - Port 0: RMII PHY, RMII MAC modes • High performance 3-port switch with VLAN, QoS - Port 1: Internal PHY packet prioritization, rate limiting, IGMP monitoring - Port 2: Internal PHY and management functions - 2 internal 10/100 PHYs with HP Auto-MDIX • Integrated Ethernet PHYs with HP Auto-MDIX support • Compliant with Energy Efficient Ethernet 802.3az - Fully compliant with IEEE 802.3 standards • Wake on LAN (WoL) support - 10BASE-T and 100BASE-TX support • Integrated IEEE 1588v2 hardware time stamp unit - 100BASE-FX support via external fiber transceiver • Cable diagnostic support - Full and half duplex support, full duplex flow control • 1.8V to 3.3V variable voltage I/O - Backpressure (forced collision) half duplex flow control - Automatic flow control based on programmable levels • Integrated 1.2V regulator for single 3.3V operation - Automatic 32-bit CRC generation and checking - Programmable interframe gap, flow control pause value
Target Applications
- Auto-negotiation, polarity correction & MDI/MDI-X • IEEE 1588v2 hardware time stamp unit • Cable, satellite, and IP set-top boxes - Global 64-bit tunable clock • Digital televisions & video recorders - Boundary clock: master / slave, one-step / two-step, • VoIP/Video phone systems, home gateways end-to-end / peer-to-peer delay • Test/Measurement equipment, industrial automation - Transparent Clock with Ordinary Clock: master / slave, one-step / two-step, end-to-end / peer-
Key Benefits
to-peer delay - Fully programmable timestamp on TX or RX, • Ethernet Switch Fabric timestamp on GPIO - 32K buffer RAM, 512 entry forwarding table - 64-bit timer comparator event generation (GPIO or IRQ) - Port based IEEE 802.1Q VLAN support (16 groups) • Comprehensive power management features - Programmable IEEE 802.1Q tag insertion/removal - 3 power-down levels - IEEE 802.1D spanning tree protocol support - Wake on link status change (energy detect) - 4 separate transmit queues available per port - Magic packet wakeup, Wake on LAN (WoL), wake on - Fixed or weighted egress priority servicing broadcast, wake on perfect DA - QoS/CoS Packet prioritization - Wakeup indicator event signal - Input priority determined by VLAN tag, DA lookup, TOS, • Power and I/O DIFFSERV or port default value - Programmable Traffic Class map based on input priority - Integrated power-on reset circuit on per port basis - Latch-up performance exceeds 150mA - Remapping of 802.1Q priority field on per port basis per EIA/JESD78, Class II - Programmable rate limiting at the ingress with coloring - JEDEC Class 3A ESD performance and random early discard, per port / priority - Programmable rate limiting at the egress with leaky - Single 3.3V power supply bucket algorithm, per port / priority (integrated 1.2V regulator) - IGMP v1/v2/v3 monitoring for Multicast packet filtering • Additional Features - Programmable broadcast storm protection with global % - Multifunction GPIOs control and enable per port - Ability to use low cost 25MHz crystal for reduced BOM - Programmable buffer usage limits • Packaging - Dynamic queues on internal memory - Pb-free RoHS compliant 56-pin QFN - Programmable filter by MAC address • Available in commercial and industrial temp. ranges • Switch Management - Port mirroring/monitoring/sniffing: ingress and/or egress traffic on any port or port pair - Fully compliant statistics (MIB) gathering counters  2015 Microchip Technology Inc. DS00001926B-page 1 Document Outline Highlights Target Applications Key Benefits 1.0 Preface TABLE 1-1: General Terms (Continued) TABLE 1-2: Buffer Types TABLE 1-3: Register Nomenclature 2.0 General Description FIGURE 2-1: Internal Block Diagram 3.0 Pin Descriptions and Configuration FIGURE 3-1: 56-QFN Pin Assignments (Top View) TABLE 3-1: 56-QFN Package Pin Assignments (Continued) TABLE 3-2: LAN Port A Pin Descriptions (Continued) TABLE 3-3: LAN Port B Pin Descriptions (Continued) TABLE 3-4: LAN Port A & B Power and Common Pin Descriptions TABLE 3-5: Switch Port 0 RMII & Configuration Strap Pin Descriptions (Continued) TABLE 3-6: I2C Management Pin Descriptions TABLE 3-7: EEPROM Pin Descriptions TABLE 3-8: GPIO, LED & Configuration Strap Pin Descriptions (Continued) TABLE 3-9: Miscellaneous Pin Descriptions (Continued) TABLE 3-10: JTAG Pin Descriptions TABLE 3-11: Core and I/O Power Pin Descriptions 4.0 Power Connections FIGURE 4-1: Power Connections - Regulators Enabled FIGURE 4-2: Power Connections - Regulators Disabled 5.0 Register Map FIGURE 5-1: Register Address Map TABLE 5-1: System Control and Status Registers (Continued) TABLE 5-2: Read After Write Timing Rules (Continued) TABLE 5-3: Read After Read Timing Rules 6.0 Clocks, Resets, and Power Management TABLE 6-1: Reset Sources and Affected Device Functionality (Continued) FIGURE 6-1: PME Interrupt Signal Generation TABLE 6-2: Power Management States 7.0 Configuration Straps TABLE 7-1: Soft-Strap Configuration Strap Definitions (Continued) TABLE 7-2: Hard-Strap Configuration Strap Definitions (Continued) TABLE 7-3: Port 0 Mode Strap Mapping 8.0 System Interrupts FIGURE 8-1: Functional Interrupt Hierarchy TABLE 8-1: Interrupt Registers 9.0 Ethernet PHYs TABLE 9-1: Default PHY Serial MII Addressing FIGURE 9-1: Physical PHY Block Diagram FIGURE 9-2: 100BASE-TX Transmit Data Path TABLE 9-2: 4B/5B Code Table (Continued) FIGURE 9-3: 100BASE-TX Receive Data Path FIGURE 9-4: Direct Cable Connection vs. Cross-Over Cable Connection TABLE 9-3: Interrupt Management Table (Continued) TABLE 9-4: Alternative Interrupt Mode Management Table TABLE 9-5: Wakeup Generation Cases FIGURE 9-5: TDR Usage Flow Diagram TABLE 9-6: TDR Propagation Constants TABLE 9-7: Typical Measurement Error for Open Cable (+/- Meters) (Continued) TABLE 9-8: Typical Measurement Error for Shorted Cable (+/- Meters) TABLE 9-9: Match Case Estimated Cable Length (CBLN) Lookup (Continued) FIGURE 9-6: Near-end Loopback Block Diagram FIGURE 9-7: Connection Loopback Block Diagram TABLE 9-10: 100BASE-FX LOS, SD and TP Copper Selection PHY A TABLE 9-11: 100BASE-FX LOS, SD and TP Copper Selection PHY B FIGURE 9-8: Physical PHY External Access Timing TABLE 9-12: Physical PHY External Access Timing Values TABLE 9-13: Physical PHY A and B MII Serially Accessible Control and Status Registers (Continued) TABLE 9-14: 10BASE-T Full Duplex Advertisement Default Value TABLE 9-15: 10BASE-T Half Duplex Advertisement Bit Default Value TABLE 9-16: MODE[2:0] Definitions (Continued) TABLE 9-17: Auto-MDIX Enable and Auto-MDIX State Bit Functionality TABLE 9-18: MDIX Strap Functionality TABLE 9-19: MMD Registers (Continued) FIGURE 9-9: Virtual PHY Timing TABLE 9-20: Virtual PHY Timing Values TABLE 9-21: Virtual PHY MII Serially Addressable Register Index TABLE 9-22: Emulated Link Partner Pause Flow Control Ability Default Values TABLE 9-23: Emulated Link Partner Default Advertised Ability 10.0 Switch Fabric FIGURE 10-1: ALR Table Entry Structure FIGURE 10-2: Switch Engine Transmit Queue Selection FIGURE 10-3: Switch Engine Transmit Queue Calculation FIGURE 10-4: VLAN Table Entry Structure TABLE 10-1: Spanning Tree States (Continued) TABLE 10-2: Typical Ingress Rate Settings FIGURE 10-5: Switch Engine Ingress Flow Priority Selection FIGURE 10-6: Switch Engine Ingress Flow Priority Calculation TABLE 10-3: Typical Broadcast Rate Settings TABLE 10-4: Typical Egress Rate Settings FIGURE 10-7: Hybrid Port Tagging and Un-Tagging TABLE 10-5: Switch Fabric Flow Control Enable Logic FIGURE 10-8: Switch Fabrics CSR Write Access Flow Diagram FIGURE 10-9: Switch Fabrics CSR Read Access Flow Diagram TABLE 10-6: Switch Fabric Interface Logic Registers TABLE 10-7: SWITCH_MAC_ADDRL, SWITCH_MAC_ADDRH and EEPROM Byte Ordering FIGURE 10-10: Example SWITCH_MAC_ADDL, SWITCH_MAC_ADDRH and EEPROM Setup TABLE 10-8: Switch Fabric CSR to SWITCH_CSR_DIRECT_DATA Address Range Map (Continued) (Continued) TABLE 10-9: Indirectly Accessible Switch Control and Status Registers (Continued) TABLE 10-10: Metering/Color Table Register Descriptions 11.0 I2C Slave Controller 11.1 Functional Overview 11.2 I2C Overview 11.3 I2C Slave Operation 11.3.1 I2C Slave Command Format 11.3.2 Device Initialization 11.3.2.1 I2C Slave Read Polling for Initialization Complete 11.3.3 Access During and Following Power Management 11.3.4 I2C Slave Read Sequence 11.3.5 I2C Slave Write Sequence 12.0 I2C Master EEPROM Controller FIGURE 12-1: I2C Cycle FIGURE 12-2: I2C Master Timing TABLE 12-1: I2C Master Timing Values (Continued) TABLE 12-2: I2C EEPROM Size Ranges FIGURE 12-3: I2C EEPROM Addressing FIGURE 12-4: I2C EEPROM Byte Read FIGURE 12-5: I2C EEPROM Sequential Byte Reads FIGURE 12-6: I2C EEPROM Byte Write FIGURE 12-7: EEPROM Access Flow Diagram TABLE 12-3: EEPROM Contents Format Overview FIGURE 12-8: EEPROM Loader Flow Diagram TABLE 12-4: EEPROM Configuration Bits TABLE 12-5: I2C Master EEPROM Controller Registers 13.0 MII Data Interfaces 13.1 Port 0 Data Path 13.1.1 Port 0 RMII MAC Mode 13.1.1.1 Reference Clock Selection 13.1.1.2 Clock Drive Strength 13.1.2 Port 0 RMII PHY Mode 13.1.2.1 Isolate 13.1.2.2 Reference Clock Selection 13.1.2.3 Clock Drive Strength 13.1.2.4 Collision Test 13.1.2.5 Loopback Mode 13.2 Port 1 Data Path 13.2.1 Port 1 Internal PHY Mode 13.3 Port 2 Data Path 13.3.1 Port 2 Internal PHY Mode 13.4 Switch Fabric Timing Requirements 13.4.1 RMII Interface Timing (MAC Mode) 13.4.2 RMII Interface Timing (PHY Mode) 14.0 MII Management 14.1 Functional Overview 14.2 SMI Slave Controller 14.2.1 Device Initialization 14.2.2 Access During and Following Power Management 14.2.3 SMI Slave Command Format 14.2.3.1 Read Sequence 14.2.3.2 Write Sequence 14.2.4 SMI Timing Requirements 14.3 PHY Management Interface (PMI) 14.3.1 PMI Slave Command Format 14.3.2 PHY Register Host Access 14.3.3 EEPROM Loader PHY Register Access 14.3.4 PMI Timing Requirements 14.3.5 PHY Management Interface (PMI) Registers 14.3.5.1 PHY Management Interface Data Register (PMI_DATA) 14.3.5.2 PHY Management Interface Access Register (PMI_ACCESS) 14.4 MII Management Multiplexer 14.4.1 Port 0 Management Path Configurations 14.4.1.1 Port 0 MAC Mode SMI Managed 14.4.1.2 Port 0 MAC Mode SMI Managed - Device Initialization 14.4.1.3 Port 0 PHY Mode SMI Managed 14.4.1.4 Port 0 PHY Mode SMI Managed - Device Initialization 14.4.1.5 Port 0 MAC Mode I2C Managed 14.4.1.6 Port 0 PHY Mode I2C Managed 15.0 IEEE 1588 FIGURE 15-1: 1588 Clock Block Diagram FIGURE 15-2: 1588 Clock Event Block Diagram TABLE 15-1: 1588 Control and Status Registers (Continued) 16.0 General Purpose Timer & Free-Running Clock TABLE 16-1: Miscellaneous Registers 17.0 GPIO/LED Controller TABLE 17-1: LED Operation as a Function of LED_FUN[2:0] = 000b - 011b TABLE 17-2: LED Operation as a Function of LED_FUN[2:0] = 100b - 111b TABLE 17-3: GPIO/LED Registers 18.0 Miscellaneous TABLE 18-1: Miscellaneous Registers 19.0 JTAG TABLE 19-1: IEEE 1149.1 Op Codes FIGURE 19-1: JTAG Timing TABLE 19-2: JTAG Timing Values 20.0 Operational Characteristics TABLE 20-1: 56-PIN QFN Package Thermal Parameters TABLE 20-2: Maximum Power Dissipation TABLE 20-3: Current Consumption and Power Dissipation (Regs. Disabled) (Continued) TABLE 20-4: Current Consumption and Power Dissipation (Regs. Enabled) (Continued) TABLE 20-5: Non-Variable I/O DC Electrical Characteristics (Continued) TABLE 20-6: Variable I/O DC Electrical Characteristics TABLE 20-7: 100BASE-TX Transceiver Characteristics TABLE 20-8: 10BASE-T Transceiver Characteristics FIGURE 20-1: Output Equivalent Test Load FIGURE 20-2: Power Sequence Timing - Internal Regulators FIGURE 20-3: Power Sequence Timing - External Regulators TABLE 20-9: Power Sequencing Timing Values FIGURE 20-4: RST# Pin Configuration Strap Latching Timing TABLE 20-10: RST# Pin Configuration Strap Latching Timing Values FIGURE 20-5: Power-On Configuration Strap Latching Timing TABLE 20-11: Power-On Configuration Strap Latching Timing Values TABLE 20-12: Crystal Specifications 21.0 Package Outlines FIGURE 21-1: 56-QFN Package FIGURE 21-2: 56-QFN Package Dimensions 22.0 Revision History TABLE 22-1: Revision History The Microchip Web Site Product Identification System Worldwide Sales and Service