Data SheetADE7763ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Stresses above those listed under Absolute Maximum Ratings Table 3. may cause permanent damage to the device. This is a stress ParameterRating rating only, and functional operation of the device at these or AVDD to AGND –0.3 V to +7 V any other conditions above those indicated in the operational DVDD to DGND –0.3 V to +7 V section of this specification is not implied. Exposure to absolute DVDD to AVDD –0.3 V to +0.3 V maximum rating conditions for extended periods may affect Analog Input Voltage to AGND –6 V to +6 V device reliability. V1P, V1N, V2P, and V2N Reference Input Voltage to AGND –0.3 V to AVDD + 0.3 V Digital Input Voltage to DGND –0.3 V to DVDD + 0.3 V Digital Output Voltage to DGND –0.3 V to DVDD + 0.3 V Operating Temperature Range Industrial –40°C to +85°C Storage Temperature Range –65°C to +150°C Junction Temperature 150°C 20-Lead SSOP, Power Dissipation 450 mW θJA Thermal Impedance 112°C/W Lead Temperature, Soldering Vapor Phase (60 s) 215°C Infrared (15 s) 220°C ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. C | Page 7 of 56 Document Outline Features General Description Functional Block Diagram Revision History Specifications Timing Characteristics Absolute Maximum Ratings ESD Caution Terminology Pin Configuration and Function Descriptions Typical Performance Characteristics Theory of Operation Analog Inputs di/dt Current Sensor and Digital Integrator Zero-Crossing Detection Zero-Crossing Timeout Period Measurement Power Supply Monitor Line Voltage Sag Detection Sag Level Set Peak Detection Peak Level Set Peak Level Record Interrupts Using Interrupts with an MCU Interrupt Timing Temperature Measurement Analog-to-Digital Conversion Antialias Filter ADC Transfer Function Reference Circuit Channel 1 ADC Channel 1 Sampling Channel 1 RMS Calculation Channel 1 RMS Offset Compensation Channel 2 ADC Channel 2 Sampling Channel 2 RMS Calculation Channel 2 RMS Offset Compensation Phase Compensation Active Power Calculation Energy Calculation Integration Time under Steady Load Power Offset Calibration Energy-to-Frequency Conversion Line Cycle Energy Accumulation Mode Positive-Only Accumulation Mode No-Load Threshold Apparent Power Calculation Apparent Power Offset Calibration Apparent Energy Calculation Integration Times under Steady Load Line Apparent Energy Accumulation Energies Scaling Calibrating an Energy Meter Watt Gain Calibrating Watt Gain Using a Reference Meter Example Calibrating Watt Gain Using an Accurate Source Example Watt Offset Calibrating Watt Offset Using a Reference Meter Example Calibrating Watt Offset with an Accurate Source Example Phase Calibration Calibrating Phase Using a Reference Meter Example Calibrating Phase with an Accurate Source Example VRMS and IRMS Calibration Apparent Energy CLKIN Frequency Suspending Functionality Checksum Register Serial Interface ADE7763 Serial Write Operation Serial Read Operation Registers Register Descriptions Communication Register Mode Register (0x09) Outline Dimensions Ordering Guide CH1OS Register (0x0D) Outline Dimensions Ordering Guide