Datasheet PIC16F84A (Microchip) - 3

ManufacturerMicrochip
Description18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller
Pages / Page90 / 3 — PIC16F84A. 1.0. DEVICE OVERVIEW. FIGURE 1-1:. PIC16F84A BLOCK DIAGRAM
File Format / SizePDF / 1.9 Mb
Document LanguageEnglish

PIC16F84A. 1.0. DEVICE OVERVIEW. FIGURE 1-1:. PIC16F84A BLOCK DIAGRAM

PIC16F84A 1.0 DEVICE OVERVIEW FIGURE 1-1: PIC16F84A BLOCK DIAGRAM

Model Line for this Datasheet

Text Version of Document

link to page 3 link to page 4
PIC16F84A 1.0 DEVICE OVERVIEW
The program memory contains 1K words, which trans- lates to 1024 instructions, since each 14-bit program This document contains device specific information for memory word is the same width as each device instruc- the operation of the PIC16F84A device. Additional tion. The data memory (RAM) contains 68 bytes. Data information may be found in the PIC® Mid-Range Ref- EEPROM is 64 bytes. erence Manual, (DS33023), which may be downloaded There are also 13 I/O pins that are user-configured on from the Microchip website. The Reference Manual a pin-to-pin basis. Some pins are multiplexed with other should be considered a complementary document to device functions. These functions include: this data sheet, and is highly recommended reading for a better understanding of the device architecture and • External interrupt operation of the peripheral modules. • Change on PORTB interrupt The PIC16F84A belongs to the mid-range family of the • Timer0 clock input PIC® microcontroller devices. A block diagram of the Table 1-1 details the pinout of the device with descrip- device is shown in Figure 1-1. tions and details for each pin.
FIGURE 1-1: PIC16F84A BLOCK DIAGRAM
13 Data Bus 8 Program Counter EEPROM Data Memory FLASH Program Memory EEPROM RAM 8 Level Stack EEDATA Data Memory 1K x 14 File Registers (13-bit) 64 x 8 68 x 8 Program Bus 14 7 RAM Addr EEADR Instruction Register Addr Mux 5 Direct Addr 7 Indirect TMR0 Addr FSR reg RA4/T0CKI STATUS reg 8 MUX Power-up Timer I/O Ports 8 Instruction Oscillator Decode & Start-up Timer Control ALU Power-on RA3:RA0 Reset Timing Watchdog W reg RB7:RB1 Generation Timer RB0/INT OSC2/CLKOUT MCLR VDD, VSS OSC1/CLKIN  2001-2013 Microchip Technology Inc. DS35007C-page 3 Document Outline 1.0 Device Overview FIGURE 1-1: PIC16F84A Block Diagram TABLE 1-1: PIC16F84A Pinout Description 2.0 Memory Organization 2.1 Program Memory Organization FIGURE 2-1: Program Memory Map and Stack - PIC16F84A 2.2 Data Memory Organization 2.2.1 General purpose Register File FIGURE 2-2: Register File Map - PIC16F84A 2.3 Special Function Registers TABLE 2-1: Special Function Register File Summary 2.3.1 STATUS Register Register 2-1: Status Register (Address 03h, 83h) 2.3.2 OPTION Register Register 2-2: OPTION Register (Address 81h) 2.3.3 INTCOn Register Register 2-3: INTCON Register (Address 0Bh, 8Bh) 2.4 PCL and PCLATH 2.4.1 Stack 2.5 Indirect Addressing; INDF and FSR Registers EXAMPLE 2-1: Indirect Addressing EXAMPLE 2-2: How to Clear RAM Using Indirect Addressing FIGURE 2-3: Direct/Indirect Addressing 3.0 Data EEPROM Memory Register 3-1: EECON1 Register (Address 88h) 3.1 Reading the EEPROM Data Memory EXAMPLE 3-1: Data EEPROM Read 3.2 Writing to the EEPROM Data Memory EXAMPLE 3-2: Data EEPROM Write 3.3 Write Verify EXAMPLE 3-3: Write Verify TABLE 3-1: Registers/Bits Associated with Data EEPROM 4.0 I/O Ports 4.1 PORTA and TRISA Registers EXAMPLE 4-1: Initializing PORTA FIGURE 4-1: Block Diagram of Pins RA3:RA0 FIGURE 4-2: Block Diagram of Pin RA4 TABLE 4-1: PORTA Functions TABLE 4-2: Summary of Registers Associated With PORTA 4.2 PORTB and TRISB Registers EXAMPLE 4-2: Initializing PORTB FIGURE 4-3: Block Diagram of Pins RB7:RB4 FIGURE 4-4: Block Diagram of Pins RB3:RB0 TABLE 4-3: PORTB Functions TABLE 4-4: Summary of Registers Associated With PORTB 5.0 Timer0 Module 5.1 Timer0 Operation 5.2 Prescaler FIGURE 5-1: Timer0 Block Diagram 5.2.1 Switching Prescaler ASSIGnment 5.3 Timer0 Interrupt FIGURE 5-2: Block Diagram of the Timer0/WDT Prescaler TABLE 5-1: Registers Associated with Timer0 6.0 Special Features of the CPU 6.1 Configuration Bits Register 6-1: PIC16F84A Configuration Word 6.2 Oscillator Configurations 6.2.1 Oscillator Types 6.2.2 Crystal Oscillator/CERAmic Resonators FIGURE 6-1: Crystal/Ceramic Resonator Operation (HS, XT or LP OSC Configuration) FIGURE 6-2: External Clock Input Operation (HS, XT or LP OSC Configuration) TABLE 6-1: Capacitor Selection for Ceramic Resonators TABLE 6-2: Capacitor Selection for Crystal Oscillator 6.2.3 RC Oscillator FIGURE 6-3: RC Oscillator Mode 6.3 Reset FIGURE 6-4: Simplified Block Diagram of On-Chip Reset Circuit TABLE 6-3: Reset Condition for Program Counter and the STATUS Register TABLE 6-4: Reset Conditions for All Registers 6.4 Power-on Reset (POR) 6.5 Power-up Timer (PWRT) 6.6 Oscillator Start-up Timer (OST) FIGURE 6-5: External Power-on Reset Circuit (For Slow Vdd Power-up) FIGURE 6-6: Time-out Sequence on Power-up (MCLR not Tied to Vdd): Case 1 FIGURE 6-7: Time-out Sequence on Power-up (MCLR Not Tied To Vdd): Case 2 FIGURE 6-8: Time-out Sequence on Power-up (MCLR Tied to Vdd): Fast Vdd Rise Time FIGURE 6-9: Time-Out Sequence on Power-Up (MCLR Tied to Vdd): Slow Vdd Rise Time 6.7 Time-out Sequence and Power-down Status Bits (TO/PD) TABLE 6-5: Time-out in Various Situations TABLE 6-6: STATUS bits and Their Significance 6.8 Interrupts FIGURE 6-10: Interrupt Logic 6.8.1 INT Interrupt 6.8.2 TMR0 Interrupt 6.8.3 PORTB Interrupt 6.8.4 Data EEPROM Interrupt 6.9 Context Saving During Interrupts EXAMPLE 6-1: Saving STATUS and W Registers in RAM 6.10 Watchdog Timer (WDT) 6.10.1 WDT Period 6.10.2 WDT Programming Considerations FIGURE 6-11: Watchdog Timer Block Diagram TABLE 6-7: Summary of Registers Associated With the Watchdog Timer 6.11 Power-down Mode (SLEEP) 6.11.1 SLEEP 6.11.2 Wake-up from SLEEP FIGURE 6-12: Wake-up From Sleep Through Interrupt 6.11.3 Wake-Up Using Interrupts 6.12 Program Verification/Code Protection 6.13 ID Locations 6.14 In-Circuit Serial Programming 7.0 Instruction Set Summary TABLE 7-1: Opcode Field Descriptions FIGURE 7-1: General Format for Instructions TABLE 7-2: PIC16CXXX Instruction Set 7.1 Instruction Descriptions 8.0 Development Support 9.0 Electrical Characteristics FIGURE 9-1: PIC16F84A-20 Voltage-Frequency Graph FIGURE 9-2: PIC16LF84A-04 Voltage- Frequency Graph FIGURE 9-3: PIC16F84A-04 Voltage- Frequency Graph 9.1 DC Characteristics 9.2 DC Characteristics: PIC16F84A-04 (Commercial, Industrial) PIC16F84A-20 (Commercial, Industrial) PIC16LF84A-04 (Commercial, Industrial) 9.3 AC (Timing) Characteristics 9.3.1 Timing Parameter Symbology 9.3.2 Timing Conditions TABLE 9-1: Temperature and Voltage Specifications - AC FIGURE 9-4: Parameter Measurement Information FIGURE 9-5: Load Conditions 9.3.3 Timing Diagrams and Specifications FIGURE 9-6: External Clock Timing TABLE 9-2: External Clock Timing Requirements FIGURE 9-7: CLKOUT and I/O Timing TABLE 9-3: CLKOUT and I/O Timing Requirements FIGURE 9-8: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing TABLE 9-4: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements FIGURE 9-9: Timer0 Clock Timings TABLE 9-5: Timer0 Clock Requirements 10.0 DC/AC Characteristic Graphs FIGURE 10-1: Typical Idd vs. Fosc OVER Vdd (HS Mode, 25°C) FIGURE 10-2: Maximum Idd vs. Fosc OVER Vdd (HS Mode, -40° to +125°C) FIGURE 10-3: Typical Idd vs. Fosc OVER Vdd (XT Mode, 25°C) FIGURE 10-4: Maximum Idd vs. Fosc OVER Vdd (XT Mode, -40° to +125°C) FIGURE 10-5: Typical Idd vs. Fosc OVER Vdd (LP Mode, 25°C) FIGURE 10-6: Maximum Idd vs. Fosc OVER Vdd (LP Mode, -40° to +125°C) FIGURE 10-7: Average Fosc vs. Vdd for R (RC Mode, C = 22 pF, 25°C) FIGURE 10-8: Average Fosc vs. Vdd for R (RC Mode, C = 100 pF, 25°C) FIGURE 10-9: Average Fosc vs. Vdd for R (RC Mode, C = 300 pF, 25°C) FIGURE 10-10: Ipd vs. Vdd (Sleep Mode, all peripherals disabled) FIGURE 10-11: Ipd vs. Vdd (WDT Mode) FIGURE 10-12: Typical, Minimum, and Maximum WDT Period vs. Vdd over Temp FIGURE 10-13: Typical, Minimum and Maximum Voh vs. Ioh (Vdd = 5V, -40°C to +125°C) FIGURE 10-14: Typical, Minimum and Maximum Voh vs. Ioh (Vdd = 3V, -40°C to +125°C) FIGURE 10-15: Typical, Minimum and Maximum Vol vs. Iol (Vdd = 5V, -40°C to +125°C) FIGURE 10-16: Typical, Minimum and Maximum Vol vs. Iol (Vdd = 3V, -40°C to +125°C) FIGURE 10-17: Minimum and Maximum Vin vs. Vdd, (TTL Input, -40°C to +125°C) FIGURE 10-18: Minimum and Maximum Vin vs. Vdd (ST Input, -40°C to +125°C) 11.0 Packaging Information 11.1 Package Marking Information Appendix A: Revision History Appendix B: Conversion Considerations Appendix C: Migration from Baseline to Mid-range Devices A B C D E F I M O P R S T W Z The Microchip Web Site Customer Change Notification Service Customer Support Reader Response Corporate Office Atlanta Boston Chicago Cleveland Fax: 216-447-0643 Dallas Detroit Indianapolis Toronto Fax: 852-2401-3431 Australia - Sydney China - Beijing China - Shanghai India - Bangalore Korea - Daegu Korea - Seoul Singapore Taiwan - Taipei Fax: 43-7242-2244-393 Denmark - Copenhagen France - Paris Germany - Munich Italy - Milan Spain - Madrid UK - Wokingham Worldwide Sales and Service