Datasheet TLR377GYZ (Rohm) - 9
Manufacturer | Rohm |
Description | Ultra Small Package & High Precision Rail-to-Rail Input/Output CMOS Operational Amplifier |
Pages / Page | 23 / 9 — TLR377GYZ. Typical Performance Curves - continued. … |
File Format / Size | PDF / 1.2 Mb |
Document Language | English |
TLR377GYZ. Typical Performance Curves - continued. TSZ02201-0GLG2G800110-1-2. 27.Jun.2023 Rev.001
Model Line for this Datasheet
Text Version of Document
link to page 4 link to page 4 link to page 4 link to page 4
TLR377GYZ Typical Performance Curves - continued
VSS = 0 V 160 160 B] 150 140 [d B] VS = 5.5 V V [d S = 5.0 V RR V 140 120 A CM Ta = -20 °C : Ta = +25 °C in io a 130 100 G Rat e n g VS = 1.8 V o 120 80 ti lta c Ta = +85 °C e l Vo a 110 Rej 60 n e g d o Si 100 40 e -m rg n a o L 90 m 20 Com 80 0 -50 -25 0 25 50 75 100 125 1 2 3 4 5 6 Ambient Temperature: Ta [°C] Supply Voltage: V [V] S Figure 13. Large Signal Voltage Gain vs Ambient Figure 14. Common-mode Rejection Ratio vs Supply Voltage Temperature 160 200 B] B] 180 140 [d d [ RR 160 120 CM VS = 5 V V PSRR : S = 5.5 V : 140 io io 100 120 Rat Rat n n o o ti 80 ti 100 c c e V e S = 1.8 V 80 Rej 60 Rej e d ly o p 60 p 40 -m n 40 o r Su e m 20 w 20 Po Com 0 0 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Ambient Temperature: Ta [°C] Ambient Temperature: Ta [°C] Figure 15. Common-mode Rejection Ratio vs Ambient Figure 16. Power Supply Rejection Ratio vs Ambient Temperature Temperature (Note) The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com
TSZ02201-0GLG2G800110-1-2
© 2023 ROHM Co., Ltd. All rights reserved. 9 /20 TSZ22111 • 15 • 001
27.Jun.2023 Rev.001
Document Outline General Description Features Applications Key Specifications Package Typical Application Circuit Pin Configuration Pin Description Block Diagram Description of Blocks Absolute Maximum Ratings Thermal Resistance Recommended Operating Conditions Electrical Characteristics Typical Performance Curves Figure 1. Supply Current vs Supply Voltage Figure 2. Supply Current vs Ambient Temperature Figure 3. Output Voltage High vs Supply Voltage Figure 4. Output Voltage High vs Ambient Temperature Figure 5. Output Voltage Low vs Supply Voltage Figure 6. Output Voltage Low vs Ambient Temperature Figure 7. Output Source Current vs Output Voltage Figure 8. Output Sink Current vs Output Voltage Figure 9. Input Offset Voltage vs Supply Voltage Figure 10. Input Offset Voltage vs Ambient Temperature Figure 11. Input Offset Voltage vs Input Common-mode Voltage Figure 12. Large Signal Voltage Gain vs Supply Voltage Figure 13. Large Signal Voltage Gain vs Ambient Temperature Figure 14. Common-mode Rejection Ratio vs Supply Voltage Figure 15. Common-mode Rejection Ratio vs Ambient Temperature Figure 16. Power Supply Rejection Ratio vs Ambient Temperature Figure 17. Input Bias Current vs Ambient Temperature Figure 18. Input-referred Noise Voltage Density vs Frequency Figure 19. Slew Rate vs Supply Voltage Figure 20. Slew Rate vs Ambient Temperature Figure 21. Gain Bandwidth Product vs Ambient Temperature Figure 22. Phase Margin vs Load Capacitance Figure 23. Voltage Gain, Phase vs Frequency Figure 24. Voltage Gain vs Frequency Figure 25. Turn On Time vs Ambient Temperature Figure 26. Turn Off Time vs Ambient Temperature Figure 27. Shutdown Current vs Ambient Temperature Figure 28. Output Voltage vs SDNB Voltage Application Information Application Examples I/O Equivalence Circuits Operational Notes 1. Reverse Connection of Power Supply 2. Power Supply Lines 3. Ground Voltage 4. Ground Wiring Pattern 5. Recommended Operating Conditions 6. Inrush Current 7. Testing on Application Boards 8. Inter-pin Short and Mounting Errors 9. Unused Input Pins 10. Regarding the Input Pin of the IC 11. Ceramic Capacitor 12. Disturbance Light Ordering Information Marking Diagram Physical Dimension and Packing Information Revision History