Datasheet Texas Instruments ADS58B19

ManufacturerTexas Instruments
SeriesADS58B19
Datasheet Texas Instruments ADS58B19

9-Bit, 250-MSPS Analog-to-Digital Converter (ADC)

Datasheets

11-Bit, 200MSPS/9-Bit, 250MSPS, Ultralow-Power ADCs with Analog Buffer datasheet
PDF, 1.4 Mb, Revision: D, File published: Jan 28, 2011
Extract from the document

Prices

Status

ADS58B19IRGZRADS58B19IRGZT
Lifecycle StatusActive (Recommended for new designs)Active (Recommended for new designs)
Manufacture's Sample AvailabilityNoYes

Packaging

ADS58B19IRGZRADS58B19IRGZT
N12
Pin4848
Package TypeRGZRGZ
Industry STD TermVQFNVQFN
JEDEC CodeS-PQFP-NS-PQFP-N
Package QTY2500250
CarrierLARGE T&RSMALL T&R
Device MarkingAZ58B19AZ58B19
Width (mm)77
Length (mm)77
Thickness (mm).9.9
Pitch (mm).5.5
Max Height (mm)11
Mechanical DataDownloadDownload

Parametrics

Parameters / ModelsADS58B19IRGZR
ADS58B19IRGZR
ADS58B19IRGZT
ADS58B19IRGZT
# Input Channels11
Analog Input BW, MHz550550
ArchitecturePipelinePipeline
DNL(Max), +/-LSB0.850.85
DNL(Typ), +/-LSB0.150.15
ENOB, Bits99
INL(Max), +/-LSB1.21.2
INL(Typ), +/-LSB0.250.25
Input BufferYesYes
Input Range, Vp-p1.51.5
InterfaceParallel CMOS,Parallel LVDSParallel CMOS,Parallel LVDS
Operating Temperature Range, C-40 to 85-40 to 85
Package GroupVQFNVQFN
Package Size: mm2:W x L, PKG48VQFN: 49 mm2: 7 x 7(VQFN)48VQFN: 49 mm2: 7 x 7(VQFN)
Power Consumption(Typ), mW287287
RatingCatalogCatalog
Reference ModeIntInt
Resolution, Bits99
SFDR, dB76.576.5
SINAD, dB55.855.8
SNR, dB55.855.8
Sample Rate(Max), MSPS250250

Eco Plan

ADS58B19IRGZRADS58B19IRGZT
RoHSCompliantCompliant

Application Notes

  • High-Speed Analog-to-Digital Converter Basics
    PDF, 1.1 Mb, File published: Jan 11, 2012
    The goal of this document is to introduce a wide range of theories and topics that are relevant tohigh-speed analog-to-digital converters (ADC). This document provides details on sampling theorydata-sheet specifications ADC selection criteria and evaluation methods clock jitter and other commonsystem-level concerns. In addition some end-users will want to extend the performance capabil
  • QFN Layout Guidelines
    PDF, 1.3 Mb, File published: Jul 28, 2006
    Board layout and stencil information for most Texas Instruments Quad Flat No-Lead (QFN) devices is provided in their data sheets. This document helps printed-circuit board designers understand and better use this information for optimal designs.
  • CDCE62005 as Clock Solution for High-Speed ADCs
    PDF, 805 Kb, File published: Sep 4, 2008
    TI has introduced a family of devices well-suited to meet the demands for high-speed ADC devices such as the ADS5527 which is capable of sampling up to 210 MSPS. To realize the full potential of these high-performance products it is imperative to provide a low phase noise clock source. The CDCE62005 clock synthesizer chip offers a real-world clocking solution to meet these stringent requirements
  • Smart Selection of ADC/DAC Enables Better Design of Software-Defined Radio
    PDF, 376 Kb, File published: Apr 28, 2009
    This application report explains different aspects of selecting analog-to-digital and digital-to-analog data converters for Software-Defined Radio (SDR) applications. It also explains how ADS61xx ADCs and the DAC5688 from Texas Instruments fit properly for SDR designs.
  • Driving High-Speed ADCs: Circuit Topologies and System-Level Parameters (Rev. A)
    PDF, 327 Kb, Revision: A, File published: Sep 10, 2010
    This application report discusses the performance-related aspects of passive and active interfaces at the analog input of high-speed pipeline analog-to-digital converters (ADCs). The report simplifies the many possibilities into two main categories: passive and active interface circuits. The first section of the report gives an overview of equivalent models of buffered and unbuffered ADC input cir
  • Phase Noise Performance and Jitter Cleaning Ability of CDCE72010
    PDF, 2.3 Mb, File published: Jun 2, 2008
    This application report presents phase noise data taken on the CDCE72010 jitter cleaner and synchronizer PLL device. The phase noise performance of the CDCE72010 depends on the phase noise of the reference clock VCXO clock and the CDCE72010 itself. This application report shows the phase noise performance at several of the most popular CDMA frequencies. This data helps the user to choose the rig
  • CDCE72010 as a Clocking Solution for High-Speed Analog-to-Digital Converters
    PDF, 424 Kb, File published: Jun 8, 2008
    Texas Instruments has recently introduced a family of devices suitable to meet the demands of high-speed high-IF sampling analog-to-digital converters (ADCs) such as the ADS5483 which is capable of sampling up to 135 MSPS. To realize the full potential of these high-performance devices the system must provide an extremely low phase noise clock source. The CDCE72010 clock synthesizer chip offers
  • Principles of Data Acquisition and Conversion (Rev. A)
    PDF, 132 Kb, Revision: A, File published: Apr 16, 2015
  • A Glossary of Analog-to-Digital Specifications and Performance Characteristics (Rev. B)
    PDF, 425 Kb, Revision: B, File published: Oct 9, 2011
    This glossary is a collection of the definitions of Texas Instruments' Delta-Sigma (О”ОЈ), successive approximation register (SAR), and pipeline analog-to-digital (A/D) converter specifications and performance characteristics. Although there is a considerable amount of detail in this document, the product data sheet for a particular product specification is the best and final reference.
  • Analog-to-Digital Converter Grounding Practices Affect System Performance (Rev. A)
    PDF, 69 Kb, Revision: A, File published: May 18, 2015

Model Line

Series: ADS58B19 (2)

Manufacturer's Classification

  • Semiconductors> Data Converters> Analog-to-Digital Converters (ADCs)> High Speed ADCs (>10MSPS)
EMS supplier