Datasheet MCP631, MCP632, MCP633, MCP634, MCP635, MCP639 (Microchip) - 4

ManufacturerMicrochip
DescriptionThe MCP63x family of operational amplifiers features high gain bandwidth product and high output short circuit current
Pages / Page60 / 4 — MCP631/2/3/4/5/9. AC ELECTRICAL SPECIFICATIONS. Electrical …
File Format / SizePDF / 2.4 Mb
Document LanguageEnglish

MCP631/2/3/4/5/9. AC ELECTRICAL SPECIFICATIONS. Electrical Characteristics:. Parameters. Sym. Min. Typ. Max. Units. Conditions. AC Response

MCP631/2/3/4/5/9 AC ELECTRICAL SPECIFICATIONS Electrical Characteristics: Parameters Sym Min Typ Max Units Conditions AC Response

Model Line for this Datasheet

Text Version of Document

link to page 6 link to page 5 link to page 6
MCP631/2/3/4/5/9 AC ELECTRICAL SPECIFICATIONS Electrical Characteristics:
Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT  VDD/2, VL = VDD/2, RL = 2 k to VL, CL = 50 pF and CS = VSS (refer to Figure 1-2).
Parameters Sym. Min. Typ. Max. Units Conditions AC Response
Gain-Bandwidth Product GBWP — 24 — MHz Phase Margin PM — 65 — ° G = +1 Open-Loop Output Impedance ROUT — 20 —
AC Distortion
Total Harmonic Distortion plus Noise THD + N — 0.0015 — % G = +1, VOUT = 2VP-P, f = 1 kHz, VDD = 5.5V, BW = 80 kHz
Step Response
Rise Time, 10% to 90% tr — 20 — ns G = +1, VOUT = 100 mVP-P Slew Rate SR — 10 — V/µs G = +1
Noise
Input Noise Voltage Eni — 16 — µVP-P f = 0.1 Hz to 10 Hz Input Noise Voltage Density eni — 10 — nV/Hz f = 1 MHz Input Noise Current Density ini 4 — fA/Hz f = 1 kHz
DIGITAL ELECTRICAL SPECIFICATIONS Electrical Characteristics:
Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT  VDD/2, VL = VDD/2, RL = 2 k to VL, CL = 50 pF and CS = VSS (refer to Figures 1-1 and 1-2).
Parameters Sym. Min. Typ. Max. Units Conditions CS Low Specifications
CS Logic Threshold, Low VIL VSS — 0.2VDD V CS Input Current, Low ICSL — 0.1 — nA CS = 0V
CS High Specifications
CS Logic Threshold, High VIH 0.8VDD VDD V CS Input Current, High ICSH — 0.7 — µA CS = VDD GND Current I -2 -1 SS — µA CS Internal Pull-Down Resistor RPD — 5 — M Amplifier Output Leakage IO(LEAK) — 50 — nA CS = VDD, TA = +125°C
CS Dynamic Specifications
CS Input Hysteresis V — HYST 0.25 — V CS High to Amplifier Off Time tOFF — 200 — ns G = +1 V/V, VL = VSS, (output goes High Z) CS = 0.8VDD to VOUT = 0.1(VDD/2) CS Low to Amplifier On Time tON — 2 10 µs G = +1 V/V, VL = VSS, CS = 0.2VDD to VOUT = 0.9(VDD/2) DS20002197C-page 4  2009-2014 Microchip Technology Inc. Document Outline 24 MHz, 2.5 mA Rail-to-Rail Output (RRO) Op Amps Features: Typical Applications: Design Aids: Description: Typical Application Circuit High Gain-Bandwidth Op Amp Portfolio Package Types 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications DC Electrial Specifications AC Electrical Specifications Digital Electrical Specifications Temperature Specifications 1.3 Timing Diagram FIGURE 1-1: Timing Diagram. 1.4 Test Circuits FIGURE 1-2: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves 2.1 DC Signal Inputs FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage vs. Power Supply Voltage with VCM = 0V. FIGURE 2-4: Input Offset Voltage vs. Output Voltage. FIGURE 2-5: Low-Input Common-Mode Voltage Headroom vs. Ambient Temperature. FIGURE 2-6: High-Input Common-Mode Voltage Headroom vs. Ambient Temperature. FIGURE 2-7: Input Offset Voltage vs. Common-Mode Voltage with VDD = 2.5V. FIGURE 2-8: Input Offset Voltage vs. Common-Mode Voltage with VDD = 5.5V. FIGURE 2-9: CMRR and PSRR vs. Ambient Temperature. FIGURE 2-10: DC Open-Loop Gain vs. Ambient Temperature. FIGURE 2-11: DC Open-Loop Gain vs. Load Resistance. FIGURE 2-12: Input Bias and Offset Currents vs. Ambient Temperature with VDD = 5.5V. FIGURE 2-13: Input Bias Current vs. Input Voltage (below VSS). FIGURE 2-14: Input Bias and Offset Currents vs. Common-Mode Input Voltage with TA = +85°C. FIGURE 2-15: Input Bias and Offset Currents vs. Common-Mode Input Voltage with TA = +125°C. 2.2 Other DC Voltages and Currents FIGURE 2-16: Output Voltage Headroom vs. Output Current. FIGURE 2-17: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-18: Output Short-Circuit Current vs. Power Supply Voltage. FIGURE 2-19: Supply Current vs. Power Supply Voltage. FIGURE 2-20: Supply Current vs. Common-Mode Input Voltage. 2.3 Frequency Response FIGURE 2-21: CMRR and PSRR vs. Frequency. FIGURE 2-22: Open-Loop Gain vs. Frequency. FIGURE 2-23: Gain-Bandwidth Product and Phase Margin vs. Ambient Temperature. FIGURE 2-24: Gain-Bandwidth Product and Phase Margin vs. Common-Mode Input Voltage. FIGURE 2-25: Gain-Bandwidth Product and Phase Margin vs. Output Voltage. FIGURE 2-26: Closed-Loop Output Impedance vs. Frequency. FIGURE 2-27: Gain Peaking vs. Normalized Capacitive Load. FIGURE 2-28: Channel-to-Channel Separation vs. Frequency. 2.4 Noise and Distortion FIGURE 2-29: Input Noise Voltage Density vs. Frequency. FIGURE 2-30: Input Noise Voltage Density vs. Input Common-Mode Voltage with f = 100 Hz. FIGURE 2-31: Input Noise Voltage Density vs. Input Common-Mode Voltage with f = 1 MHz. FIGURE 2-32: Input Noise vs. Time with 0.1 Hz Filter. FIGURE 2-33: THD+N vs. Frequency. 2.5 Time Response FIGURE 2-34: Non-Inverting Small Signal Step Response. FIGURE 2-35: Non-Inverting Large Signal Step Response. FIGURE 2-36: Inverting Small Signal Step Response. FIGURE 2-37: Inverting Large Signal Step Response. FIGURE 2-38: The MCP631/2/3/4/5/9 Family Shows No Input Phase Reversal With Overdrive. FIGURE 2-39: Slew Rate vs. Ambient Temperature. FIGURE 2-40: Maximum Output Voltage Swing vs. Frequency. 2.6 Chip Select Response FIGURE 2-41: CS Current vs. Power Supply Voltage. FIGURE 2-42: CS and Output Voltages vs. Time with VDD = 2.5V. FIGURE 2-43: CS and Output Voltages vs. Time with VDD = 5.5V. FIGURE 2-44: CS Hysteresis vs. Ambient Temperature. FIGURE 2-45: CS Turn-On Time vs. Ambient Temperature. FIGURE 2-46: CS Pull-Down Resistor (RPD) vs. Ambient Temperature. FIGURE 2-47: Quiescent Current in Shutdown vs. Power Supply Voltage. FIGURE 2-48: Output Leakage Current vs. Output Voltage. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 3.4 Chip Select Digital Input (CS) 3.5 Exposed Thermal Pad (EP) 4.0 Applications 4.1 Input FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. FIGURE 4-3: Unity-Gain Voltage Limitations for Linear Operation. 4.2 Rail-to-Rail Output FIGURE 4-4: Output Current. FIGURE 4-5: Diagram for Power Calculations. 4.3 Improving Stability FIGURE 4-6: Output Resistor, RISO, Stabilizes Large Capacitive Loads. FIGURE 4-7: Recommended RISO Values for Capacitive Loads. FIGURE 4-8: Amplifier with Parasitic Capacitance. FIGURE 4-9: Maximum Recommended RF vs. Gain. 4.4 MCP633, MCP635 and MCP639 Chip Select 4.5 Power Supply 4.6 High-Speed PCB Layout 4.7 Typical Applications FIGURE 4-10: Power Driver. FIGURE 4-11: Transimpedance Amplifier for an Optical Detector. FIGURE 4-12: H-Bridge Driver. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Trademarks Worldwide Sales and Service
EMS supplier