KSZ8852HLE1.2General Description The KSZ8852 product line consists of industrial capable Ethernet switches, providing integrated communication for a range of Industrial Ethernet and general Ethernet applications. The KSZ8852 product enables distributed, daisy-chained topologies preferred for industrial Ethernet networks. Conven- tional centralized (i.e., star-wired) topologies are also supported for fault tolerant arrangements. A flexible 8 or 16-bit general bus interface is provided for interfacing to an external host processor. The wire-speed, store-and-forward switching fabric provides a full complement of QoS and congestion control features optimized for real-time Ethernet The KSZ8852 product is built upon Microchip’s industry-leading Ethernet technology, with features designed to offload host processing and streamline your overall design: • Wire-speed Ethernet switching fabric with extensive filtering • Two integrated 10/100BASE-TX PHY transceivers, featuring the industry’s lowest power consumption • Full-featured QoS support • Flexible management options that support common standard interfaces A robust assortment of power management features including energy-efficient Ethernet (EEE) have been designed in to satisfy energy-efficient environments. FIGURE 1-1:KSZ8852 TOP LEVEL ARCHITECTUREKSZ8852 10/100 MAC PHY HOST MAC INTERFACE 10/100 MAC PHY 10/100 SWITCH 2018 Microchip Technology Inc. DS00002761A-page 7 Document Outline 1.0 Introduction 1.1 General Terms and Conditions 1.2 General Description 2.0 Pin Description and Configuration 3.0 Functional Description 3.1 Direction Terminology 3.2 Physical (PHY) Block 3.3 MDI/MDI−X Auto Crossover 3.4 Auto Negotiation 3.5 LINK MD® Cable Diagnostics 3.6 On-Chip Termination Resistors 3.7 Lookback Support 3.8 MAC (Media Access Controller) Block 3.9 Switch Block 3.10 IGMP Support 3.11 IPv6 MLD Snooping 3.12 Port Mirroring Support 3.13 IEEE 802.1Q VLAN Support 3.14 QoS Priority Support 3.15 Rate-Limiting Support 3.16 MAC Address Filtering Function 3.17 Queue Management Unit (QMU) 3.18 Device Clocks 3.19 Power 3.20 Internal Low Voltage LDO Regulator 3.21 Power Management 3.22 Wake-On-LAN 3.23 Interfaces 4.0 Register Descriptions 4.1 Device Registers 4.2 Register Map of CPU Accessible I/O Registers 4.3 Register Bit Definitions 4.4 Type-of-Service (TOS) Priority Control Registers 4.5 Indirect Access Data Registers 4.6 Power Management Control and Wake-Up Event Status 4.7 Go Sleep Time and Clock Tree Power-Down Control Registers 4.8 PHY and MII Basic Control Registers 4.9 Port 1 Control Registers 4.10 Port 2 Control Registers 4.11 Port 3 Control Registers 4.12 Switch Global Control Registers 4.13 Source Address Filtering Registers 4.14 TXQ Rate Control Registers 4.15 Auto-Negotiation Next Page Registers 4.16 EEE and Link Partner Advertisement Registers 4.17 Internal I/O Register Space Mapping for Interrupts, BIU, and Global Reset (0x100 - 0x1FF) 4.18 Host MAC Address Registers: MARL, MARM, and MARH 4.19 Internal I/O Register Space Mapping for the Queue Management Unit (QMU) (0x170 - 0x1FF) 4.20 Internal I/O Register Space Mapping for Interrupt Registers (0x190 - 0x193) 4.21 Internal I/O Register Space Mapping for the Queue Management Unit (QMU) (0x19C - 0x1B9) 4.22 Management Information Base (MIB) Counters 4.23 Static MAC Address Table 4.24 Dynamic MAC Address Table 4.25 VLAN Table 5.0 Operational Characteristics 5.1 Absolute Maximum Ratings* 5.2 Operating Ratings** 6.0 Electrical Characteristics 7.0 Timing Specifications 7.1 Host Interface Read / Write Timing 7.2 Auto-Negotiation Timing 7.3 Serial EEPROM Interface Timing 7.4 Reset Timing and Power Sequencing 7.5 Reset Circuit Guidelines 7.6 Reference Circuits – LED Strap-In Pins 7.7 Reference Clock – Connection and Selection 8.0 Selection of Isolation Transformers 9.0 Package Outline Appendix A: Data Sheet Revision History The Microchip Web Site Customer Change Notification Service Customer Support Product Identification System Worldwide Sales and Service