Why not take advantage of the micro-controller included in many systems these days? This design uses microcontroller feedback to produce a –50-V, 1-W power supply (see Figure 1). It leverages an unused analog-to-digital converter (ADC) input and a pulse-width-modulation (PWM) output to close the loop on a basic inverting single-ended primary inductance converter (SEPIC) topology.
Varying the duty cycle of the waveform that drives the pass-FET (Q1) controls the circuit's negative output voltage. A simple voltage translator solves the problem of feeding a negative voltage back to the microcontroller's 12-bit ADC, which has only a positive-voltage common-mode range. The npn transistor (Q2) and R1, R2, and R3 form the voltage translator for converting the negative output voltage to a proportional positive feedback voltage for the ADC.
Within the microcontroller, a simple Proportional Integral Plus (PIP) software routine closes the loop. The code for controlling the loop is written for a Freescale DSP56827 digital signal processor, but it could be adapted to any microcontroller with a multiply function. Typical integral gain is 0.01, and proportional gain is 0.2, but some experimentation will be necessary to determine optimal values.